994 resultados para Diet therapy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the anti-cancer activity of alginate coated chitosan nanoparticles (CHNP) encapsulating cell-permeable dominant negative survivin (SR9) with locked nucleic acid (LNA) aptamers targeting EpCAM and nucleolin (termed as "nanobullets") in vitro (2D and 3D cell culture models) and in vivo (colon cancer mouse xenograft model). We incorporated three LNA modifications in each sequence in order to enhance the stability of these aptamers. Confocal microscopy revealed binding of the LNA-aptamers to their specific markers with high affinity. The muco-adhesive nanobullets showed 6-fold higher internalization in cancer cells when compared to non-cancerous cells, suggesting a tumour specific uptake. A higher intensity of nanobullets was observed in both the periphery and the core of the multicellular tumour spheroids compared to non-targeted CHNP-SR9. The nanobullets were found to be the highly effective as they led to a 2.26 fold (p < 0.05) reduction at 24 h and a 4.95 fold reduction (p ≤ 0.001) in the spheroid size at 72 h. The tumour regression was 4 fold higher in mice fed on a nanobullet diet when compared to a control diet. The nanobullets were able to show a significantly high apoptotic (p ≤ 0.0005) and necrotic index in the tumour cell population (p ≤ 0.005) when compared to void NPs. Therefore, our nanoparticles have shown highly promising results and therefore deliver a new conduit towards the approach of cancer-targeted nanodelivery. This journal is

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examined the interaction of hypercaloric diet (HD) and physical exercise on lipid profile and oxidative stress in serum and liver of rats. Male Wistar rats (60-days-old) were fed with a control (C) and hypercaloric diet (H). Each of the two dietary groups (C and H) was divided into three subgroups (n = 8), sedentary (CS and HS), exercised 2 days a week (CE2 and HE2) and exercised 5 days a week (CE5 and HE5). The swimming was selected as a model for exercise performance. After 8-weeks exercised rats showed decreased lactate dehydrogenase serum activities, demonstrating the effectiveness of the swimming as an aerobic-training protocol. Exercise 5-days a week reduced the body weight gain. Triacylglycerol (TG) and very low-density lipoprotein (VLDL-C) were increased in HD-fed rats. HE5 and CE5 rats had decreased TG, VLDL-C and cholesterol. HE2 rats had enhanced high-density lipoprotein (HDL-C) in serum. No alterations were observed in lipid hydroperoxide (LH), while total antioxidant substances (TAS) were increased in serum of exercised rats. HD-fed rats had hepatic TG accumulation. Superoxide dismutase activities were increased and catalase was decreased in liver of exercised rats. The interaction of HD and physical exercise reduced TAS and enhanced LH levels in hepatic tissue. In conclusion, this study confirmed the beneficial effect of physical exercise as a dyslipidemic-lowering component. Interaction of HD and physical exercise had discrepant effects on serum and liver oxidative stress. The interaction of HID and physical exercise reduced the oxidative stress in serum. HD and physical exercise interaction had pro-oxidant effect on hepatic tissue, suggesting that more studies should be done before using physical exercise as an adjunct therapy to reduce the adverse effects of HD. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Diet composition is one of the factors that may contribute to intraindividual variability in the anticoagulant response to warfarin. Aim of the study To determine the associations between food pattern and anticoagulant response to warfarin in a group of Brazilian patients with vascular disease. Methods Recent and usual food intakes were assessed in 115 patients receiving warfarin; and corresponding plasma phylloquinone (vitamin K-1), serum triglyceride concentrations, prothrombin time (PT), and International Normalized Ratio (INR) were determined. A factor analysis was used to examine the association of specific foods and biochemical variables with anticoagulant data. Results Mean age was 59 +/- 15 years. Inadequate anticoagulation, defined as values of INR 2 or 3, was found in 48% of the patients. Soybean oil and kidney beans were the primary food sources of phylloquinone intake. Factor analysis yielded four separate factors, explaining 56.4% of the total variance in the data set. The factor analysis revealed that intakes of kidney beans and soybean oil, 24-h recall of phylloquinone intake, PT and INR loaded significantly on factor 1. Triglycerides, PT, INR, plasma phylloquinone, and duration of anticoagulation therapy loaded on factor 3. Conclusion Fluctuations in phylloquinone intake, particularly from kidney beans, and plasma phylloquinone concentrations were associated with variation in measures of anticoagulation (PT and INR) in a Brazilian group of patients with vascular disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a case of a female patient who underwent corrective aortic coarctation surgery that progressed to chylothorax on the fifth postoperative day. Because the patient was clinically stable and had a functioning digestive tract, the nutritional team decided to treat her by oral nutritional support with a low-lipid diet, rich in medium-chain triacylglycerols. After 20 d, the patient returned to her habitual home diet and did not develop pleural spilling, showing full healing of the thoracic duct. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity affects approximately 20% of the world population, and exercise is the primary non-pharmacological therapy. The combined use of exercise and low-level laser therapy (LLLT) may potentiate the effects promoted by exercise. The objective of this study was to investigate the effects of exercise in combination with phototherapy on adipocyte area, activity of the enzyme citrate synthase and muscle morphological analysis. We used 64 Wistar rats, which were divided into eight groups with 8 rats each: sedentary chow-diet (SC); sedentary chow-diet plus laser therapy (SCL), exercised chow-diet (EC); exercised chow-diet plus laser therapy (ECL); sedentary high-fat diet (SH); sedentary high-fat diet plus laser therapy (SHL); exercised high-fat diet (EH); exercised high-fat diet, laser therapy (EHL). The animals were submitted to a program of swimming training for 90min/5 times per week for 8weeks and LLLT (GA-Al-AS, 830nm) at a dose of 4.7J/point and a total energy of 9.4J/animal, with duration of 47s, which was applied to both gastrocnemius muscles after exercise. We conclude that the combined use of exercise and phototherapy increases the activity of the enzyme citrate synthase and decreases the white adipocyte area epididymal, retroperitoneal and visceral in obese rats, enhancing the effects of exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Aim The purpose of the present study was to assess the dietary fat intake, glucose, insulin, Homeostasis model assessment for insulin resistance HOMA-IR, and endotoxin levels and correlate them with adipokine serum concentrations in obese adolescents who had been admitted to long-term interdisciplinary weight-loss therapy. Design The present study was a longitudinal clinical intervention of interdisciplinary therapy. Adolescents (n = 18, aged 15–19 y) with a body mass index > 95th percentile were admitted and evaluated at baseline and again after 1 year of interdisciplinary therapy. We collected blood samples, and IL-6, adiponectin, and endotoxin concentrations were measured by ELISA. Food intake was measured using 3-day diet records. In addition, we assessed glucose and insulin levels as well as the homeostasis model assessment for insulin resistance (HOMA-IR). Results The most important finding from the present investigation was that the long-term interdisciplinary lifestyle therapy decreased dietary fat intake and endotoxin levels and improved HOMA-IR. We observed positive correlations between dietary fat intake and endotoxin levels, insulin levels, and the HOMA-IR. In addition, endotoxin levels showed positive correlations with IL-6 levels, insulin levels and the HOMA-IR. Interestingly, we observed a negative correlation between serum adiponectin and both dietary fat intake and endotoxin levels. Conclusions The present results indicate an association between dietary fat intake and endotoxin level, which was highly correlated with a decreased pro-inflammatory state and an improvement in HOMA-IR. In addition, this benefits effect may be associated with an increased adiponectin level, which suggests that the interdisciplinary therapy was effective in improving inflammatory pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Phenylketonuria is the most prevalent inborn error of aminoacid metabolism. Is an autosomal recessive disorder. It results from mutations in the phenylalanine hydroxilase (PAH) gene. Phenotypes can vary from mild hyperphenylalaninemia to a severe phenylketonuria wich, if untreated, results in severe mental retardation. Thanks to neonatal screening programmes, early detection and promp dietetic intervention (phenylalanine restricted diet lifelong) has allowed to avoid neurocognitive complications. Recently, a new therapy is become widely used: the oral supplementation with the PAH cofactor (BH4), wich can alleviate the diet burden. Genotype-phenotype correlation is a reliable tool to predict metabolic phenotype in order to establish a better tailored diet and to assess the potential responsiveness to BH4 therapy. Aim Molecular analysis of the PAH gene, evaluation of genotype-phenotype correlation and prediction of BH4 responsiveness in a group of HPA patients living in Emilia Romagna. Patients and methods. We studied 48 patients affected by PAH deficiency in regular follow-up to our Metabolic Centre. We performed the molecular analysis of these patients using genomic DNA extracted from peripheral blood samples Results. We obtained a full genotipic characterization of 46 patients. We found 87 mutant alleles and 35 different mutations, being the most frequent IVS10-11 G>A (19.3%), R261Q (9.1%), R158Q (9.1%), R408Q (6.8%) and A403V (5.7%), including 2 new ones (L287, N223Y) ever described previously. Notably, we found 15 mutations already identified in BH4-responsive patients, according to the literature. We found 42 different genotipic combinations, most of them in single patients and involving a BH4-responsive mutation. Conclusion. BH4 responsiveness is shown by a consistent number of PAH deficient hyperphenylalaninemic patients. This treatment, combined with a less restricted diet or as monotherapy, can reduce nutritional complications and improve the quality of life of these patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Essential, primary, or idiopathic hypertension is defined as high BP in which secondary causes such as renovascular disease, renal failure, pheochromocytoma, hyperaldosteronism, or other causes of secondary hypertension are not present. Essential hypertension accounts for 80-90% of all cases of hypertension; it is a heterogeneous disorder, with different patients having different causal factors that may lead to high BP. Life-style, diet, race, physical activity, smoke, cultural level, environmental factors, age, sex and genetic characteristics play a key role in the increasing risk. Conversely to the essential hypertension, secondary hypertension is often associated with the presence of other pathological conditions such as dyslipidaemia, hypercholesterolemia, diabetes mellitus, obesity and primary aldosteronism. Amongst them, primary aldosteronism represents one of the most common cause of secondary hypertension, with a prevalence of 5-15% depending on the severity of blood pressure. Besides high blood pressure values, a principal feature of primary aldosteronism is the hypersecretion of mineralcorticoid hormone, aldosterone, in a manner that is fairly autonomous of the renin-angiotensin system. Primary aldosteronism is a heterogeneous pathology that may be divided essentially in two groups, idiopathic and familial form. Despite all this knowledge, there are so many hypertensive cases that cannot be explained. These individuals apparently seem to be healthy, but they have a great risk to develop CVD. The lack of known risk factors makes difficult their classification in a scale of risk. Over the last three decades a good help has been given by the pharmacogenetics/pharmacogenomics, a new area of the traditional pharmacology that try to explain and find correlations between genetic variation, (rare variations, SNPs, mutations), and the risk to develop a particular disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

pH value, calcium, and phosphate and to a lesser extent fluoride content of a drink or foodstuff are important factors explaining erosive attack. They determine the degree of saturation with respect to tooth minerals, which is the driving force for dissolution. Solutions oversaturated with respect to dental hard tissue will not dissolve it. Addition of calcium (and phosphate) salts to erosive drinks showed protection of surface softening. Today, several Ca-enriched soft drinks are on the market or products with naturally high content in Ca and P are available (such as yoghurt), which do not soften the dental hard tissue. The greater the buffering capacity of the drink or food, the longer it will take for the saliva to neutralize the acid. The buffer capacity of a solution has a distinct effect on the erosive attack when the solution remains adjacent to the tooth surface and is not replaced by saliva. A higher buffer capacity of a drink or foodstuff will enhance the processes of dissolution because more ions from the tooth mineral are needed to render the acid inactive for further demineralization. Further, the amount of drink in the mouth in relation to the amount of saliva present will modify the process of dissolution. There is no clear-cut critical pH for erosion as there is for caries. Even at a low pH, it is possible that other factors are strong enough to prevent erosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lecithin:cholesterol acyltransferase (LCAT) is a key plasma enzyme in cholesterol and high density lipoprotein (HDL) metabolism. Transgenic rabbits overexpressing human LCAT had 15-fold greater plasma LCAT activity that nontransgenic control rabbits. This degree of overexpression was associated with a 6.7-fold increase in the plasma HDL cholesterol concentration in LCAT transgenic rabbits. On a 0.3% cholesterol diet, the HDL cholesterol concentrations increased from 24 +/- 1 to 39 +/- 3 mg/dl in nontransgenic control rabbits (n = 10; P < 0.05) and increased from 161 +/- 5 to 200 +/- 21 mg/dl (P < 0.001) in the LCAT transgenic rabbits (n = 9). Although the baseline non-HDL concentrations of control (4 +/- 3 mg/dl) and transgenic rabbits (18 +/- 4 mg/dl) were similar, the cholesterol-rich diet raised the non-HDL cholesterol concentrations, reflecting the atherogenic very low density, intermediate density, and low density lipoprotein particles observed by gel filtration chromatography. The non-HDL cholesterol rose to 509 +/- 57 mg/dl in controls compared with only 196 +/- 14 mg/dl in the LCAT transgenic rabbits (P < 0.005). The differences in the plasma lipoprotein response to a cholesterol-rich diet observed in the transgenic rabbits paralleled the susceptibility to developing aortic atherosclerosis. Compared with nontransgenic controls, LCAT transgenic rabbits were protected from diet-induced atherosclerosis with significant reductions determined by both quantitative planimetry (-86%; P < 0.003) and quantitative immunohistochemistry (-93%; P < 0.009). Our results establish the importance of LCAT in the metabolism of both HDL and apolipoprotein B-containing lipoprotein particles with cholesterol feeding and the response to diet-induced atherosclerosis. In addition, these findings identify LCAT as a new target for therapy to prevent atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data contained in Dr. R. J. Fraser's "Vitamin chart": p. 27-94.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dietary modification is considered a cornerstone in the management of diabetes superimposed upon which are pharmacological therapies as required. The value of hypocaloric diets in reducing and eliminating glycosuria was extolled in the pre-insulin era. A common feature of the nutrient balance of these diets was restriction in the availability of carbohydrate. Herein we review the use of diet as therapy in the past and discuss the rationale for hypocaloric dietary management of type 2 diabetes in the 21st century, drawing comparisons with bariatric surgery and considering why weight loss is particularly difficult for overweight and obese individuals with type 2 diabetes. © SAGE Publications 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Full editorial: A recent study evaluating the long-term (2 yr) weight reducing efficacy of different types of diets – high or low in carbohydrates (CHOs), protein or fat - confirmed that it is calorie deficit not dietary composition that determines the loss and maintenance of body weight.1 Is there any advantage in following a specific weight loss diet? Short-term use of nutritionally complete commercially available (very) low calorie diets has benefited people with diabetes when  supported by education programmes.2 Initial weight loss has been encouraging with some fad diets eg the Atkins and the South Beach diets, but these diets are difficult to maintain and there are safety issues regarding their short- and long-term use – especially in people with diabetes.3 The types of macronutrients consumed can have a considerable impact on glycaemic control and energy metabolism. Although a low CHO diet additionally enhances initial weight loss by reducing cellular water content, if fat is not proportionally reduced the diet may not benefit the lipid profile for vascular disease risk. High fat and high protein diets – which are simultaneously low in CHOs – increase vulnerability to hypoglycaemia in people taking insulin secretagogues or on insulin therapy, and may promote excess fat metabolism and ketogenesis, particularly in people vulnerable to lack of insulin. Very low protein diets are not recommended as lean body mass tends to be reduced in diabetes. Altering the macronutrient balance has implications for the micronutrient mix: deficiencies are higher if more foods are excluded and conversely specific micronutrient excess can occur with some fad diets. The altered nutrient mix affects intestinal fauna and flora, and gut motility and glycaemic control are influenced by the quantity and type of fibre consumed. Support programmes help individuals achieve long term weight loss and there is mounting evidence that community schemes which educate and promote lifestyle changes may stem the rising tide of obesity and consequent type 2 diabetes.4 Consuming smaller portions of a balanced diet (and adjusting antidiabetic medications accordingly) will create an energy deficit to promote healthy weight loss. Increased movement/exercise will enhance this energy deficit. Knowledge (eg 1g fat has 2.25 times more energy than 1g CHO) allows sensible food choices and compensation for inclusion of small volumes of  ‘naughty but nice’ foods. Ultimately weight control requires self control. References 1. Sacks FM, Bray GA, Carey VJ et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009;360:859–73. 2. Bennett P. Obesity, diabetes and VLCD. Br J Diabetes Vasc Dis 2004;4:328–30. 3. Baldwin EJ. Fad diets in diabetes. Br J Diabetes Vasc DIs 2004;4:333–7. 4. Romon M, Lommoz A, Tafflet M et al. Downward trends in the prevalence of childhood overweight in the setting of 12-year school- and community-based programmes. Public Health Nutr 2008; Dec 28, 1–8 [Epub ahead of print].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (hMSC) chondrogenesis. We combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in hMSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce hMSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis.

Following this, we modified this anti-inflammatory engineered cartilage to incorporate rabbit MSCs and evaluated this therapeutic strategy in a pilot study in vivo in rabbit osteochondral defects. Rabbits were fed a custom doxycycline diet to induce gene expression in engineered cartilage implanted in the joint. Serum and synovial fluid were collected and the levels of doxycycline and inflammatory mediators were measured. Rabbits were euthanized 3 weeks following surgery and tissues were harvested for analysis. We found that doxycycline levels in serum and synovial fluid were too low to induce strong overexpression of hIL-1Ra in the joint and hIL-1Ra was undetectable in synovial fluid via ELISA. Although hIL-1Ra expression in the first few days local to the site of injury may have had a beneficial effect, overall a higher doxycycline dose and more readily transduced cell population would improve application of this therapy.

In addition to the 3D woven PCL scaffold, cartilage-derived matrix scaffolds have recently emerged as a promising option for cartilage tissue engineering. Spatially-defined, biomaterial-mediated lentiviral gene delivery of tunable and inducible morphogenetic transgenes may enable guided differentiation of hMSCs into both cartilage and bone within CDM scaffolds, enhancing the ability of the CDM scaffold to provide chondrogenic cues to hMSCs. In addition to controlled production of anti-inflammatory proteins within the joint, in situ production of chondro- and osteo-inductive factors within tissue-engineered cartilage, bone, or osteochondral tissue may be highly advantageous as it could eliminate the need for extensive in vitro differentiation involving supplementation of culture media with exogenous growth factors. To this end, we have utilized controlled overexpression of transforming growth factor-beta 3 (TGF-β3), bone morphogenetic protein-2 (BMP-2) or a combination of both factors, to induce chondrogenesis, osteogenesis, or both, within CDM hemispheres. We found that TGF-β3 overexpression led to robust chondrogenesis in vitro and BMP-2 overexpression led to mineralization but not accumulation of type I collagen. We also showed the development of a single osteochondral construct by combining tissues overexpressing BMP-2 (hemisphere insert) and TGF-β3 (hollow hemisphere shell) and culturing them together in the same media. Chondrogenic ECM was localized in the TGF-β3-expressing portion and osteogenic ECM was localized in the BMP-2-expressing region. Tissue also formed in the interface between the two pieces, integrating them into a single construct.

Since CDM scaffolds can be enzymatically degraded just like native cartilage, we hypothesized that IL-1 may have an even larger influence on CDM than PCL tissue-engineered constructs. Additionally, anti-inflammatory engineered cartilage implanted in vivo will likely affect cartilage and the underlying bone. There is some evidence that osteogenesis may be enhanced by IL-1 treatment rather than inhibited. To investigate the effects of an inflammatory environment on osteogenesis and chondrogenesis within CDM hemispheres, we evaluated the ability of IL-1Ra-expressing or control constructs to undergo chondrogenesis and osteogenesis in the prescence of IL-1. We found that IL-1 prevented chondrogenesis in CDM hemispheres but did not did not produce discernable effects on osteogenesis in CDM hemispheres. IL-1Ra-expressing CDM hemispheres produced robust cartilage-like ECM and did not upregulate inflammatory mediators during chondrogenic culture in the presence of IL-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Post-traumatic arthritis (PTA) is arthritis that develops following joint injury, including meniscus and ligament tears. Current treatments for PTA range from over-the-counter medication to knee replacement; however, in the presence of obesity, the levels of pro-inflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-α,) are more elevated than in non-obese individuals. The role of fatty acids, obesity, and PTA has been examined, with omega-3 fatty acids showing promise as an anti-inflammatory after injury due to its ability to suppress IL-1 and TNF-α. Due to the difficulty in switching patients’ diets, an alternative solution to increasing omega-3 levels needs to be developed. The Fat-1 enzyme, an omega-3 desaturase that has the ability to convert omega-6 to omega-3 fatty acids, may be a good target for increasing the omega-3 levels in the body.

In the first study, we examined whether Fat-1 transgenic mice on a high-fat diet would exhibit lower levels of PTA degeneration following the destabilization of the medial meniscus (DMM). Both male and female Fat-1 and wild-type (WT) littermates were put on either a control diet (10% fat) or an omega-6 rich high-fat diet (60% fat) and underwent DMM surgery. Arthritic changes were examined 12 weeks post-surgery. Fat-1 mice on both the control and high-fat diet showed protection from PTA-related degeneration, while WT mice showed severe arthritic changes. These findings suggest that the omega-6/omega-3 ratio plays an important role in reducing PTA following injury, and demonstrates the potential therapeutic benefit of the Fat-1 enzyme in preventing PTA in both normal and obese patients following acute injury.

Following this, we needed to establish a translatable delivery mechanism for getting the Fat-1 enzyme, which is not present in mammalian cells, into patients. In the second study, we examined whether anti-inflammatory gene delivery of the Fat-1 enzyme would prevent PTA following DMM surgery. In vitro testing of both lentivirus (LV) and adeno-associated virus (AAV) was completed to confirm functionality and conformation of the Fat-1 enzyme after transduction. Male WT mice were placed on an omega-6 rich high-fat diet (60% fat) and underwent DMM surgery; either local or systemic AAV injections of the Fat-1 enzyme or Luciferase, a vector control, were given immediately following surgery. 12 weeks post-surgery, arthritic changes were assessed. The systemic administration of the Fat-1 enzyme showed protection from synovial inflammation and osteophyte formation, while administration of Luciferase did not confer protection. These findings suggest the utility of gene therapy to deliver the Fat-1 enzyme, which has potential as a therapeutic for injured obese patients for the prevention of PTA.