995 resultados para Deficiency Diseases


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT; EC 2.4.2.8) is associated with a spectrum of disease that ranges from gouty arthritis (OMIM 300323) to the more severe Lesch-Nyhan syndrome (OMIM 300322). To date, all cases of HPRT deficiency have shown a mutation within the HPRT cDNA. In the present study of an individual with gout due to HPRT deficiency, we found a normal HPRT cDNA sequence. This is the first study to provide an example of HPRT deficiency which appears to be due to a defect in the regulation of the gene. © 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbamyl phosphate synthase deficiency (CPS) is a rare urea cycle defect. We present a case of a 41-year-old woman diagnosed with CPS deficiency during pregnancy. She is the oldest CPS-deficient patient, at diagnosis, reported to date and the first to be diagnosed during pregnancy. This case highlights the need for consideration of inborn errors of metabolism in adults presenting with unusual neurological and psychiatric conditions. Crown Copyright (c) 2006 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Purpose - A higher plasma concentration of total homocysteine (tHcy) is associated with a greater risk of cardiovascular events. Previous studies, largely in younger individuals, have shown that B vitamins lowered tHcy by substantial amounts and that this effect is greater in people with higher tHcy and lower folate levels. Methods - We undertook a 2-year, double-blind, placebo-controlled, randomized trial in 299 men aged >= 75 years, comparing treatment with a daily tablet containing 2 mg of folate, 25 mg of B-6, and 400 mu g of B-12 or placebo. The study groups were balanced regarding age (mean +/- SD, 78.9 +/- 2.8 years), B vitamins, and tHcy at baseline. Results - Among the 13% with B12 deficiency, the difference in mean changes in treatment and control groups for tHcy was 6.74 mu mol/L (95% CI, 3.94 to 9.55 mu mol/L) compared with 2.88 mu mol/L (95% CI, 0.07 to 5.69 mu mol/L) for all others. Among the 20% with hyperhomocysteinaemia, the difference between mean changes in treatment and control groups for men with high plasma tHcy compared with the rest of the group was 2.8 mu mol/L (95% CI, 0.6 to 4.9 mu mol/L). Baseline vitamin B12, serum folate, and tHcy were significantly associated with changes in plasma tHcy at follow-up (r = 0.252, r = 0.522, and r = -0.903, respectively; P = 0.003, <0.001, and <0.001, respectively) in the vitamin group. Conclusions - The tHcy-lowering effect of B vitamins was maximal in those who had low B12 or high tHcy levels. Community-dwelling older men, who are likely to be deficient in B12 or have hyperhomocysteinemia, may be most likely to benefit from treatment with B vitamins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myocardial infarction results in loss of cardiac muscle and deficiency in cardiac performance. Likewise, peripheral artery disease can result in critical limb ischemia leading to reduced mobility, non-healing ulcers, gangrene and amputation. Both of these common conditions diminish quality of life and enhance risk of mortality. Successful advances in treatment have led to more people surviving incidences of myocardial infarction or living with peripheral artery disease. However, the current treatments are inadequate in repairing ischemic tissue. Over the last 5 years, a vast number of patents have been submitted concerning the use of stem cells, which correlates with the exponential growth in stem cell publications. Exploiting stem cell therapy offers a real potential in replacing ischemic tissue with functional cells. In this paper, we review recent patents concerning stem cell therapy that have the potential to provide or potentiate novel treatment for ischemic cardiovascular disease. In addition, we evaluate the promise of the inventions by describing some clinical trials that are currently taking place, as well as considering how current research on ischemic cardiovascular disease may change the patent landscape in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many parts of the world in which common infectious diseases are endemic also have the highest prevalence of trace metal deficiencies or rising rates of trace metal pollution. Infectious diseases can increase human susceptibility to adverse effects of metal exposure (at suboptimal or toxic levels), and metal excess or deficiency can increase the incidence or severity of infectious diseases. The co-clustering of major infectious diseases with trace metal deficiency or toxicity has created a complex web of interactions with serious but poorly understood health repercussions, yet has been largely overlooked in animal and human studies. This book focuses on the distribution, trafficking, fate, and effects of trace metals in biological systems. Its goal is to enhance our understanding of the relationships between homeostatic mechanisms of trace metals and the pathogenesis of infectious diseases. Drawing on expertise from a range of fields, the book offers a comprehensive review of current knowledge on vertebrate metal-withholding mechanisms and the strategies employed by different microbes to avoid starvation (or poisoning). Chapters summarize current, state-of-the-art techniques for investigating pathogen-metal interactions and highlight open question to guide future research. The book makes clear that improving knowledge in this area will be instrumental to the development of novel therapeutic measures against infectious diseases. ContributorsM. Leigh Ackland, Vahid Fa Andisi, Angele L. Arrieta, Michael A. Bachman, J. Sabine Becker, Robert E. Black, Julia Bornhorst, Sascha Brunke, Joseph A. Caruso, Jennifer S. Cavet, Anson C. K. Chan, Christopher H. Contag, Heran Darwin, George V. Dedoussis, Rodney R. Dietert, Victor J. DiRita, Carol A. Fierke, Tamara Garcia-Barrera, David P. Giedroc, Peter-Leon Hagedoorn, James A. Imlay, Marek J. Kobylarz, Joseph Lemire, Wenwen Liu, Slade A. Loutet, Wolfgang Maret, Andreas Matusch, Trevor F. Moraes, Michael E. P. Murphy, Maribel Navarro, Jerome O. Nriagu, Ana-Maria Oros-Peusquens, Elisabeth G. Pacyna, Jozef M. Pacyna, Robert D. Perry, John M. Pettifor, Stephanie Pfaffen, Dieter Rehder, Lothar Rink, Anthony B. Schryvers, Ellen K. Silbergeld, Eric P. Skaar, Miguel C. P. Soares, Kyrre Sundseth, Dennis J. Thiele, Richard B. Thompson, Meghan M. Verstraete, Gonzalo Visbal, Fudi Wang, Mian Wang, Thomas J. Webster, Jeffrey N. Weiser, Günter Weiss, Inga Wessels, Bin Ye, Judith T. Zelikoff, Lihong Zhang

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews research published in recent years concerning the effects of zinc deficiency, its consequences, and possible solutions. Zinc is an essential trace element necessary for over 300 zinc metalloenzymes and required for normal nucleic acid, protein, and membrane metabolism. Zinc deficiency is one of the ten biggest factors contributing to burden of disease in developing countries. Populations in South Asia, South East Asia, and sub-Saharan Africa are at greatest risk of zinc deficiency. Zinc intakes are inadequate for about a third of the population and stunting affects 40% of preschool children. In Pakistan, zinc deficiency is an emerging health problem as about 20.6% children are found in the levels of zinc, below 60 μg/dL. Signs and symptoms caused by zinc deficiency are poor appetite, weight loss, and poor growth in childhood, delayed healing of wounds, taste abnormalities, and mental lethargy. As body stores of zinc decline, these symptoms worsen and are accompanied by diarrhea, recurrent infection, and dermatitis. Daily zinc requirements for an adult are 12-16 mg/day. Iron, calcium and phytates inhibit the absorption of zinc therefore simultaneous administration should not be prescribed. Zinc deficiency and its effects are well known but the ways it can help in treatment of different diseases is yet to be discovered. Improving zinc intakes through dietary improvements is a complex task that requires considerable time and effort. The use of zinc supplements, dietary modification, and fortifying foods with zinc are the best techniques to combat its deficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To assess the epidemiological evidence on dietary fiber intake and chronic diseases and make public health recommendations for the population in Romania based on their consumption. Populations that consume more dietary fiber from cereals, fruits and vegetables have less chronic disease. Dietary Reference Intakes recommend consumption of 14 g dietary fiber per 1,000 kcal, or 25 g for adult women and 38 g for adult men, based on epidemiologic studies showing protection against cardiovascular disease, stroke, hypertension, diabetes, obesity, metabolic syndrome, gastrointestinal disorders, colorectal -, breast -, gastric -, endometrial -, ovarian - and prostate cancer. Furthermore, increased consumption of dietary fiber improves serum lipid concentrations, lowers blood pressure, blood glucose leads to low glycemic index, aids in weight loss, improve immune function, reduce inflammatory marker levels, reduce indicators of inflammation. Dietary fibers contain an unique blend of bioactive components including resistant starches, vitamins, minerals, phytochemicals and antioxidants. Dietary fiber components have important physiological effects on glucose, lipid, protein metabolism and mineral bioavailability needed to prevent chronic diseases. Materials and methods: Data regarding diet was collected based on questionnaires. We used mathematical formulas to calculate the mean dietary fiber intake of Romanian adult population and compared the results with international public health recommendations. Results: Based on the intakes of vegetables, fruits and whole cereals we calculated the Mean Dietary Fiber Intake/day/person (MDFI). Our research shows that the national average MDFI was 9.8 g fiber/day/person, meaning 38% of Dietary Requirements, and the rest of 62% representing a “fiber gap” that we have to take into account. This deficiency predisposes to chronic diseases. Conclusions and recommendations:The poor control of relationship between dietary fiber intake and chronic diseases is a major issue that can result in adverse clinical and economic outcomes. The population in Romania is at risk to develop such diseases due to the deficient fiber consumption. A model of chronic diseases costs is needed to aid attempts to reduce them while permitting optimal management of the chronic diseases. This paper presents a discussion of the burden of chronical disease and its socio-economic implications and proposes a model to predict the costs reduction by adequate intake of dietary fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurodegenerative disorders are heterogenous in nature and include a range of ataxias with oculomotor apraxia, which are characterised by a wide variety of neurological and ophthalmological features. This family includes recessive and dominant disorders. A subfamily of autosomal recessive cerebellar ataxias are characterised by defects in the cellular response to DNA damage. These include the well characterised disorders Ataxia-Telangiectasia (A-T) and Ataxia-Telangiectasia Like Disorder (A-TLD) as well as the recently identified diseases Spinocerebellar ataxia with axonal neuropathy Type 1 (SCAN1), Ataxia with Oculomotor Apraxia Type 2 (AOA2), as well as the subject of this thesis, Ataxia with Oculomotor Apraxia Type 1 (AOA1). AOA1 is caused by mutations in the APTX gene, which is located at chromosomal locus 9p13. This gene codes for the 342 amino acid protein Aprataxin. Mutations in APTX cause destabilization of Aprataxin, thus AOA1 is a result of Aprataxin deficiency. Aprataxin has three functional domains, an N-terminal Forkhead Associated (FHA) phosphoprotein interaction domain, a central Histidine Triad (HIT) nucleotide hydrolase domain and a C-terminal C2H2 zinc finger. Aprataxins FHA domain has homology to FHA domain of the DNA repair protein 5’ polynucleotide kinase 3’ phosphatase (PNKP). PNKP interacts with a range of DNA repair proteins via its FHA domain and plays a critical role in processing damaged DNA termini. The presence of this domain with a nucleotide hydrolase domain and a DNA binding motif implicated that Aprataxin may be involved in DNA repair and that AOA1 may be caused by a DNA repair deficit. This was substantiated by the interaction of Aprataxin with proteins involved in the repair of both single and double strand DNA breaks (XRay Cross-Complementing 1, XRCC4 and Poly-ADP Ribose Polymerase-1) and the hypersensitivity of AOA1 patient cell lines to single and double strand break inducing agents. At the commencement of this study little was known about the in vitro and in vivo properties of Aprataxin. Initially this study focused on generation of recombinant Aprataxin proteins to facilitate examination of the in vitro properties of Aprataxin. Using recombinant Aprataxin proteins I found that Aprataxin binds to double stranded DNA. Consistent with a role for Aprataxin as a DNA repair enzyme, this binding is not sequence specific. I also report that the HIT domain of Aprataxin hydrolyses adenosine derivatives and interestingly found that this activity is competitively inhibited by DNA. This provided initial evidence that DNA binds to the HIT domain of Aprataxin. The interaction of DNA with the nucleotide hydrolase domain of Aprataxin provided initial evidence that Aprataxin may be a DNA-processing factor. Following these studies, Aprataxin was found to hydrolyse 5’adenylated DNA, which can be generated by unscheduled ligation at DNA breaks with non-standard termini. I found that cell extracts from AOA1 patients do not have DNA-adenylate hydrolase activity indicating that Aprataxin is the only DNA-adenylate hydrolase in mammalian cells. I further characterised this activity by examining the contribution of the zinc finger and FHA domains to DNA-adenylate hydrolysis by the HIT domain. I found that deletion of the zinc finger ablated the activity of the HIT domain against adenylated DNA, indicating that the zinc finger may be required for the formation of a stable enzyme-substrate complex. Deletion of the FHA domain stimulated DNA-adenylate hydrolysis, which indicated that the activity of the HIT domain may be regulated by the FHA domain. Given that the FHA domain is involved in protein-protein interactions I propose that the activity of Aprataxins HIT domain may be regulated by proteins which interact with its FHA domain. We examined this possibility by measuring the DNA-adenylate hydrolase activity of extracts from cells deficient for the Aprataxin-interacting DNA repair proteins XRCC1 and PARP-1. XRCC1 deficiency did not affect Aprataxin activity but I found that Aprataxin is destabilized in the absence of PARP-1, resulting in a deficiency of DNA-adenylate hydrolase activity in PARP-1 knockout cells. This implies a critical role for PARP-1 in the stabilization of Aprataxin. Conversely I found that PARP-1 is destabilized in the absence of Aprataxin. PARP-1 is a central player in a number of DNA repair mechanisms and this implies that not only do AOA1 cells lack Aprataxin, they may also have defects in PARP-1 dependant cellular functions. Based on this I identified a defect in a PARP-1 dependant DNA repair mechanism in AOA1 cells. Additionally, I identified elevated levels of oxidized DNA in AOA1 cells, which is indicative of a defect in Base Excision Repair (BER). I attribute this to the reduced level of the BER protein Apurinic Endonuclease 1 (APE1) I identified in Aprataxin deficient cells. This study has identified and characterised multiple DNA repair defects in AOA1 cells, indicating that Aprataxin deficiency has far-reaching cellular consequences. Consistent with the literature, I show that Aprataxin is a nuclear protein with nucleoplasmic and nucleolar distribution. Previous studies have shown that Aprataxin interacts with the nucleolar rRNA processing factor nucleolin and that AOA1 cells appear to have a mild defect in rRNA synthesis. Given the nucleolar localization of Aprataxin I examined the protein-protein interactions of Aprataxin and found that Aprataxin interacts with a number of rRNA transcription and processing factors. Based on this and the nucleolar localization of Aprataxin I proposed that Aprataxin may have an alternative role in the nucleolus. I therefore examined the transcriptional activity of Aprataxin deficient cells using nucleotide analogue incorporation. I found that AOA1 cells do not display a defect in basal levels of RNA synthesis, however they display defective transcriptional responses to DNA damage. In summary, this thesis demonstrates that Aprataxin is a DNA repair enzyme responsible for the repair of adenylated DNA termini and that it is required for stabilization of at least two other DNA repair proteins. Thus not only do AOA1 cells have no Aprataxin protein or activity, they have additional deficiencies in PolyADP Ribose Polymerase-1 and Apurinic Endonuclease 1 dependant DNA repair mechanisms. I additionally demonstrate DNA-damage inducible transcriptional defects in AOA1 cells, indicating that Aprataxin deficiency confers a broad range of cellular defects and highlighting the complexity of the cellular response to DNA damage and the multiple defects which result from Aprataxin deficiency. My detailed characterization of the cellular consequences of Aprataxin deficiency provides an important contribution to our understanding of interlinking DNA repair processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nontuberculous mycobacteria are ubiquitous environmental organisms that have been recognised as a cause of pulmonary infection for over 50 years. Traditionally patients have had underlying risk factors for development of disease; however the proportion of apparently immunocompetent patients involved appears to be rising. Not all patients culture-positive for mycobacteria will have progressive disease, making the diagnosis difficult, though criteria to aid in this process are available. The two main forms of disease are cavitary disease (usually involving the upper lobes) and fibronodular bronchiectasis (predominantly middle and lingular lobes). For patients with disease, combination antibiotic therapy for 12-24 months is generally required for successful treatment, and this may be accompanied by drug intolerances and side effects. Published success rates range from 30-82%. As the progression of disease is variable, for some patients, attention to pulmonary hygiene and underlying diseases without immediate antimycobacterial therapy may be more appropriate. Surgery can be a useful adjunct, though is associated with risks. Randomised controlled trials in well described patients would provide stronger evidence-based data to guide therapy of NTM lung diseases, and thus are much needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin D is unique among the vitamins in that humans can synthesize it via the action of UV radiation upon the skin. This combined with its ability to act on specific target tissues via Vitamin D Receptor’s (VDR) make its classification as a steroid hormone more appropriate. While Vitamin D deficiency is a recognized problem in some northern latitude countries, recent studies have shown even in sunny countries such as Australia, vitamin D deficiency may be more prevalent than first thought. Vitamin D is most well known for its role in bone health, however, the discovery of VDR’s on a wide variety of tissue types has also opened up roles for vitamin D far beyond traditional bone health. These include possible associations with autoimmune diseases such as multiple sclerosis and inflammatory bowel diseases, cancer, cardiovascular diseases and muscle strength. Firstly, this paper presents an overview of the two sources of vitamin D: exposure to ultraviolet-B radiation and food sources of vitamin D, with particular focus on both Australian and international studies on dietary vitamin D intake and national fortification strategies. Secondly, the paper reviews recent epidemiological and experimental evidence linking vitamin D and its role in health and disease for the major conditions linked to suboptimal vitamin D, while identifying significant gaps in the research and possible future directions for research.