991 resultados para Date palm
Resumo:
Acquiring sufficient information on the genetic variation, genetic differentiation, and the ecological and genetic relationships among individuals and populations are essential for establishing guidelines on conservation and utilization of the genetic resources of a species, and more particularly when biotic and abiotic stresses are considered. The aim of this study was to assess the extent and pattern of genetic variation in date palm (Phoenix dacttylifera L) cultivars; the genetic diversity and structure in its populations occurring over geographical ranges; the variation in economically and botanically important traits of it and the variation in its drought adaptive traits, in conservation and utilization context. In this study, the genetic diversity and relationships among selected cultivars from Sudan and Morocco were assessed using microsatellite markers. Microsatellite markers were also used to investigate the genetic diversity within and among populations collected from different geographic locations in Sudan. In a separate investigation, fruits of cultivars selected from Sudan, involved morphological and chemical characterization, and morphological and DNA polymorphism of the mother trees were also investigated. Morphological and photosynthetic adjustments to water stress were studied in the five most important date palm cultivars in Sudan, namely, Gondaila, Barakawi, Bitamoda, Khateeb and Laggai; and the mechanism enhancing photosynthetic gas exchange in date palm under water stress was also investigated. Results showed a significant (p < 0.001, t-test) differentiation between Sudan and Morocco groups of cultivars. However, the major feature of all tested cultivars was the complete lack of clustering and the absence of cultivars representing specific clones. The results indicated high genetic as well as compositional and morphological diversity among cultivars; while, compositional and morphological traits were found to be characteristic features that strongly differentiate cultivars as well as phenotypes. High genetic diversity was observed also in different populations. Slight but significant (p < 0.01, AMOVA) divergence was observed for soft and dry types; however, the genetic divergence among populations was relatively weak. The results showed a complex genetic relationships between some of the tested populations especially when isolation by distance was considered. The results of the study also revealed that date palm cultivars and phenotypes possess specific direct or interaction effects due to water availability on a range of morphological and physiological traits. Soft and dry phenotypes responded differently to different levels of water stress, while the dry phenotype was more sensitive and conservative. The results indicated that date palm has high fixation capacity to photosynthetic CO2 supply with interaction effect to water availability, which can be considered as advantageous when coping with stresses that may arise with climate change. In conclusion, although a large amount of diversity exists among date palm germplasm, the findings in this study show that the role of biological nature of the tree, isolation by distance and environmental effects on structuring date palm genome was highly influenced by human impacts. Identity of date palm cultivars as developed and manipulated by date palm growers, in the absence of scientific breeding programmes, may continue to mainly depend on tree morphology and fruit characters. The pattern of genetic differentiation may cover specific morphological and physiological traits that contribute to adaptive mechanisms in each phenotype. These traits can be considered for further studies related to drought adaptation in date palm.
Resumo:
The date palm Phoenix dactylifera has played an important role in the day-to-day life of the people for the last 7000 years. Today worldwide production, utilization and industrialization of dates are continuously increasing since date fruits have earned great importance in human nutrition owing to their rich content of essential nutrients. Tons of date palm fruit wastes are discarded daily by the date processing industries leading to environmental problems. Wastes such as date pits represent an average of 10% of the date fruits. Thus, there is an urgent need to find suitable applications for this waste. In spite of several studies on date palm cultivation, their utilization and scope for utilizing date fruit in therapeutic applications, very few reviews are available and they are limited to the chemistry and pharmacology of the date fruits and phytochemical composition, nutritional significance and potential health benefits of date fruit consumption. In this context, in the present review the prospects of valorization of these date fruit processing by-products and wastes’ employing fermentation and enzyme processing technologies towards total utilization of this valuable commodity for the production of biofuels, biopolymers, biosurfactants, organic acids, antibiotics, industrial enzymes and other possible industrial chemicals are discussed
Resumo:
Date palm (Pheonix dactylifera) fruit contains an array of polyphenols, although how these levels alter with cultivar type and fruit ripening is unclear. Utilizing HPLC and LC-ESI-MS/MS, this study define and quantify an array of hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids in three common cultivars of dates (Ajwa, Barni, and Khalas) at the main ripening stages (kimri, khalal, rutab, and tamr). Polyphenols were at highest concentration at earlier stages of ripening, with concentrations reducing with ripening. The khalal stage of the Ajwa cultivar contained significantly higher (P < 0.001) levels of polyphenols than measured in the Barni and Khalas dates at the same degree of ripening. Furthermore, the Ajwa cultivar was the only one to contain significant quantities of anthocyanidins, in particular at the khalal stage. These data suggest dates are a significant source of polyphenols, especially if the earlier edible ripening stages are consumed or utilized as food ingredients.
Resumo:
The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.
Resumo:
It is presented two study cases about the approach in root analysis at field and laboratory conditions based on digital image analysis. Grapevine (Vitis vinifera L.) and date palm (Phoenix dactylifera L.) root systems were analyzed by both the monolith and trench wall method aided by digital image analysis. Correlation between root parameters and their fractional distribution over the soil profile were obtained, as well as the root diameter estimation. Results have shown the feasibility of digital image analysis for evaluation of root distribution.
Resumo:
The elemental analysis of Spanish palm dates by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry is reported for the first time. To complete the information about the mineral composition of the samples, C, H, and N are determined by elemental analysis. Dates from Israel, Tunisia, Saudi Arabia, Algeria and Iran have also been analyzed. The elemental composition have been used in multivariate statistical analysis to discriminate the dates according to its geographical origin. A total of 23 elements (As, Ba, C, Ca, Cd, Co, Cr, Cu, Fe, H, In, K, Li, Mg, Mn, N, Na, Ni, Pb, Se, Sr, V, and Zn) at concentrations from major to ultra-trace levels have been determined in 13 date samples (flesh and seeds). A careful inspection of the results indicate that Spanish samples show higher concentrations of Cd, Co, Cr, and Ni than the remaining ones. Multivariate statistical analysis of the obtained results, both in flesh and seed, indicate that the proposed approach can be successfully applied to discriminate the Spanish date samples from the rest of the samples tested.
Resumo:
Background: The present study was undertaken towards the development of SSR markers and assessing genetic relationships among 32 date palm ( Phoenix dactylifera L.) representing common cultivars grown in different geographical regions in Saudi Arabia. Results: Ninety-three novel simple sequence repeat markers were developed and screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs were dinucleotide, 25% tri, 3% tetra and 1% penta nucleotide motives. Twenty-two primers generated a total of 91 alleles with a mean of 4.14 alleles per locus and 100% polymorphism percentage. A 0.595 average polymorphic information content and 0.662 primer discrimination power values were recorded. The expected and observed heterozygosities were 0.676 and 0.763 respectively. Pair-wise similarity values ranged from 0.06 to 0.89 and the overall cultivars averaged 0.41. The UPGMA cluster analysis recovered by principal coordinate analysis illustrated that cultivars tend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) revealed that genetic variation among and within cultivars were 27% and 73%, respectively according to geographical distribution of cultivars. Conclusions: The developed microsatellite markers are additional values to date palm characterization tools that can be used by researchers in population genetics, cultivar identification as well as genetic resource exploration and management. The tested cultivars exhibited a significant amount of genetic diversity and could be suitable for successful breeding program. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).
Resumo:
Increasing food production to feed its rapidly growing population is a major policy goal of Pakistan. The production of traditional staples such as rice (Oryza sativa L.) and bread wheat (Triticum aestivum L.) has been intensified in many regions, but not in remote, drought-ridden areas. In these arid, marginal environments dates and their by-products are an option to complement staples given their high nutritive value and storability. To fill knowledge gaps about the role of date palm in the household (HH) income of rural communities and the structure of date value chains, this project studied date palm production across six districts in four provinces of Pakistan. During 2012–2013 a total of 170 HHs were interviewed with a structured questionnaire using a snowball sampling approach. The results showed that most of the HH were headed by males (99 %) who were married (74 %) and often illiterate (40 %). Agriculture was the main occupation of date palm growers (56 %), while a few coupled agricultural activities with business (17 %) or extra-farm employment opportunities (government 9 %; private sector 8 %). Date sales contributed >50 % to the total income of 39 % of HH and 90–100 % to 24 % of HH. Overall farmers grew a total of 39 date palm cultivars and cultivated an average of 409 ± 559 mature date palms. The majority of the respondents sold dates to commission agents (35 %), contractors (22 %) and wholesalers (21 %), while 28 % of HH cultivated date palms only for self-consumption. Date palm growers had only limited knowledge about high quality date cultivars, optimized farm management and about effective post-harvest conservation. Changes in extension and marketing efforts are needed to allow farmers to better exploit value chains in date thereby reaping higher benefits from improved market access to secure their often marginal income.
Resumo:
Bibliography: p. 159.
Resumo:
To unravel the settlement history of oases in northern Oman, data on topography, the agricultural setting, water and soil parameters and archaeological findings were collected in the Wadi Bani Awf with its head oasis Balad Seet. Data collection lasted from April 2000 to April 2003 and was based on the establishment of a 3D-georeferenced map of the oasis comprising all its major infrastructural and agronomic features. At today's Balad Seet, a total of 8.8 ha are planted to 2,800 date palms and 4.6 ha are divided into 385 small fields dedicated to wheat, barley, sorghum, oats, alfalfa, garlic, onion, lime and banana. Radiocarbon dating of charcoal in the lower part of the main terrace system determined its age to 911 ± 43 years. Monthly flow measurements of four major aflaj systems showed a total maximum flow of 32 m^3 h^-1 with the largest falaj contributing 78% of the total flow. During drought periods, average water flow decreased by 3% per month, however, with significant differences between the spring systems. The analysis of the tritium/^3helium ratio in the water led to an estimated water age of up to 10 years. In combination with the flow data, this provided insights into the elasticity of the spring flow over time. The use of the natural resources of the Wadi Bani Awf by a pastoral population started probably in the early 3rd millennium BC. The first permanent settlement might have been established at Balad Seet during the first part of the 1st millennium BC. Presumably it was initiated by settlers from al-Hamra, a village at the southern foot of the Hajar mountains. Given an abundant und stable flow of springs, even in periods of drought, the construction of Balad Seet's first irrigation systems may have occurred at this early time. The combination of topographic, agricultural, hydro-pedological and archaeological data allowed assessment of the carrying capacity of this oasis over the three millennia of its likely existence. The changing scarcity of land and water and the eventual optimisation of their use by different aflaj constructions have been major driving forces for the development and apparent relativeley stable existence of this oasis.
Resumo:
Little is known about nutrient fluxes as a criterion to assess the sustainability of traditional irrigation agriculture in eastern Arabia. In this study GIS-based field research on terraced cropland and groves of date palm (Phoenix dactylifera L.) was conducted over 2 years in two mountain oases of northern Oman to determine their role as hypothesized sinks for nitrogen (N), phosphorus (P) and potassium (K). At Balad Seet 55% of the 385 fields received annual inputs of 100–500 kg N ha^-1 and 26% received 500–1400 kg N ha^-1. No N was applied to 19% of the fields which were under fallow. Phosphorus was applied annually at 1–90 kg ha^-1 on 46% of the fields, whereas 27% received 90–210 kg ha^-1. No K was applied to 27% of the fields, 32% received 1–300 kg K ha^-1, and the remaining fields received up to 1400 kg ha^-1. At Maqta N-inputs were 61–277 kg ha^-1 in palm groves and 112–225 kg ha^-1 in wheat (Triticum spp.) fields, respective P inputs were 9–40 and 14–29 kg ha^-1, and K inputs were 98–421 and 113–227 kg ha^-1. For cropland, partial oasis balances (comprising inputs of manure, mineral fertilizers, N2-fixation and irrigation water, and outputs of harvested products) were similar for both oases, with per hectare surpluses of 131 kg N, 37 kg P, and 84 kg K at Balad Seet and of 136 kg N, 16 kg P and 66 kg K at Maqta. This was despite the fact that N2-fixation by alfalfa (Medicago sativa L.), estimated at up to 480 kg ha^-1 yr^-1 with an average total dry matter of 22 t ha^-1, contributed to the cropland N-balance only at the former site. Respective palm grove surpluses, in contrast were with 303 kg N, 38 kg P, and 173 kg K ha^-1 much higher at Balad Seet than with 84 kg N, 14 kg P, and 91 kg K ha^-1 at Maqta. The data show that both oases presently are large sinks for nutrients. Potential gaseous and leaching losses could at least partly be controlled by a decrease in nutrient input intensity and careful incorporation of manure.
Resumo:
Little is known about plant biodiversity, irrigation management and nutrient fluxes as criteria to assess the sustainability of traditional irrigation agriculture in eastern Arabia. Therefore interdisciplinary studies were conducted over 4 yrs on flood-irrigated fields dominated by wheat (Triticum spp.), alfalfa (Medicago sativa L.) and date palm (Phoenix dactylifera L.) in two mountain oases of northern Oman. In both oases wheat landraces consisted of varietal mixtures comprising T. aestivum and T. durum of which at least two botanical varieties were new to science. During irrigation cycles of 6-9 days on an alfalfa-planted soil, volumetric water contents ranged from 30-13%. For cropland, partial oasis balances (comprising inputs of manure, mineral fertilizers, N2-fixation and irrigation water, and outputs of harvested products) were similar for both oases, with per hectare annual surpluses of 131 kg N, 37 kg P and 84 kg K at Balad Seet and of 136 kg N, 16 kg P and 66 kg K at Maqta. Respective palm grove surpluses, in contrast were with 303 kg N, 38 kg P, and 173 kg K ha^-1 yr^-1 much higher at Balad Seet than with 84 kg N, 14 kg P and 91 kg K ha^-1 yr^-1 at Maqta. The results show that the sustainability of these irrigated landuse systems depends on a high quality of the irrigation water with low Na but high CaCO3, intensive recycling of manure and an elaborate terrace structure with a well tailored water management system that allows adequate drainage.
Resumo:
The Sultanate of Oman is located on the south-eastern coast of the Arabian Peninsula, which lies on the south-western tip of the Asian continent. The strategic geographical locations of the Sultanate with its many maritime ports distributed on the Indian Ocean have historically made it one of the Arabian Peninsula leaders in the international maritime trade sector. Intensive trading relationships over long time periods have contributed to the high plant diversity seen in Oman where agricultural production depends entirely on irrigation from groundwater sources. As a consequence of the expansion of the irrigated area, groundwater depletion has increased, leading to the intrusion of seawater into freshwater aquifers. This phenomenon has caused water and soil salinity problems in large parts of the Al-Batinah governorate of Oman and threatens cultivated crops, including banana (Musa spp.). According to the Ministry of Agriculture and Fisheries, the majority of South Al-Batinah farms are affected by salinity (ECe > 4 dS m-1). As no alternative farmland is available, the reclamation of salt-affected soils using simple cultural practices is of paramount importance, but in Oman little scientific research has been conducted to develop such methods of reclamation. This doctoral study was initiated to help filling this research gap, particularly for bananas. A literature review of the banana cultivation history revealed that the banana germplasm on the Arabian Peninsula is probably introduced from Indonesia and India via maritime routes across the Indian Ocean and the Red Sea. In a second part of this dissertation, two experiments are described. A laboratory trial conducted at the University of Kassel, in Witzenhausen, Germany from June to July 2010. This incubation experiment was done to explore how C and N mineralization of composted dairy manure and date palm straw differed in alkaline non-saline and saline soils. Each soil was amended with four organic fertilizers: 1) composted dairy manure, 2) manure + 10% date palm straw, 3) manure + 30% date palm straw or 4) date palm straw alone, in addition to un-amended soils as control. The results showed that the saline soil had a lower soil organic C content and microbial biomass C than the non-saline soil. This led to lower mineralization rates of manure and date palm straw in the saline soil. In the non-saline soil, the application of manure and straw resulted in significant increases of CO2 emissions, equivalent to 2.5 and 30% of the added C, respectively. In the non-amended control treatment of the saline soil, the sum of CO2-C reached only 55% of the soil organic C in comparison with the non-saline soil. In which 66% of the added manure and 75% of the added straw were emitted, assuming that no interactions occurred between soil organic C, manure C and straw C during microbial decomposition. The application of straw always led to a net N immobilization compared to the control. Salinity had no specific effect on N mineralization as indicated by the CO2-C to Nmin ratio of soil organic matter and manure. However, N immobilization was markedly stronger in the saline soil. Date palm straw strongly promoted saprotrophic fungi in contrast to manure and the combined application of manure and date palm straw had synergistic positive effects on soil microorganisms. In the last week of incubation, net-N mineralization was observed in nearly all treatments. The strongest increase in microbial biomass C was observed in the manure + straw treatment. In both soils, manure had no effect on the fungi-specific membrane component ergosterol. In contrast, the application of straw resulted in strong increases of the ergosterol content. A field experiment was conducted on two adjacent fields at the Agricultural Research Station, Rumais (23°41’15” N, 57°59’1” E) in the South of Al-Batinah Plain in Oman from October 2007 to July 2009. In this experiment, the effects of 24 soil and fertilizer treatments on the growth and productivity of Musa AAA cv. 'Malindi' were evaluated. The treatments consisted of two soil types (saline and amended non-saline), two fertilizer application methods (mixed and ring applied), six fertilizer amendments (1: fresh dairy manure, 2: composted dairy manure, 3: composted dairy manure and 10% date palm straw, 4: composted dairy manure and 30% date palm straw, 5: only NPK, and 6: NPK and micronutrients). Sandy loam soil was imported from another part of Oman to amended the soil in the planting holes and create non-saline conditions in the root-zone. The results indicate that replacing the saline soil in the root zone by non-saline soil improved plant growth and yield more than fertilizer amendments or application methods. Particularly those plants on amended soil where NPK was applied using the ring method and which received micronutrients grew significantly faster to harvest (339 days), had a higher average bunch weight (9.5 kg/bunch) and were consequently more productive (10.6 tonnes/hectare/cycle) compared to the other treatments.
Resumo:
Date palm (Phoenix dactylifera L.) occupies almost three percent of the total worldwide cultivated area, with an annual production of seven million tonnes (t). Pakistan is an ideal place for the cultivation of date palm due to its sandy loam soil and semi-arid climate. In 2012, Pakistan produced 600,000 t of dates, on an area of 95,000 ha. Baluchistan province is the country’s top date producer, followed by Sindh, Punjab and Khyber Pakhtunkhwa (KPK) provinces. More than 300 date varieties are known to exist in Pakistan and some commercially important cultivars are: Karbalaen, Aseel, Muzawati, Fasli, Begum Jhangi, Hillawi, Dashtiari, Sabzo, Koharaba, Jaan Swore, Rabai and Dhakki. Six districts from the four provinces of Pakistan (Jhang, Muzaffargarh and Bahawalpur (Punjab), Dera Ismail Khan (KPK), Khairpur (Sindh) and Panjgur (Baluchistan)) with largest area under date palm cultivation were selected to conduct socio-economic surveys including the income sources of date palm growers. A structured questionnaire with open-ended and closed questions was used for face-to-face interviews of 170 date palm growers. At each location after selection of a first farmer through a local guide, the former was requested to provide names and addresses of three other date growers in his area. From these three names, one was randomly selected for the next sampling. Additionally, date palm fronds and fruits of all available cultivars were collected for morphological and nutritional analyses. Soil samples were collected from the groves for subsequent chemical and physical analyses. Almost all farmers used dates as a food item for their families and some were using low quality dates as a feed for their livestock. Apart from dates, other date palm components (trunk, spadix, frond, inflorescence and seed) were used by date palm growers as a raw material for making many by-products for their families. Date palm had a major contribution in the income of households, 24% received 91-100% of their income from date palms. More than half of the surveyed farmers had date palm groves, but scattered plantations, home gardens and intercropping systems with cereal and other fruits were also present. Dhakki, Muzawati, Aseel, and Karbalaen were the most important commercial cultivars grown in the provinces of KPK, Baluchistan, and Sindh. Aseel, Karoch, Haleni, Karbalaen, and Muzawati cultivars had the most firm fruit and good total soluble sugar, calcium and magnesium contents. The amount of magnesium found in dates of studied cultivars ranged from 0.143 to 0.876 mg g-1. A great variation in frond morphology was recorded among the cultivars. Fruit length and fruit weight was highest in Dhakki date, making it visually more attractive for customers in addition to its good nutritional properties. The seed weight of the studied cultivars ranged from 0.7-2.0 g, while Desi dates had largest seed, making them less attractive for marketing. However, in terms of nutritional value and fruit size, most of the investigated varieties can compete with globally important commercial dates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)