989 resultados para DNA transfer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of profiling systems with increased sensitivity has led to a concurrent increase in the risk of detecting contaminating DNA in forensic casework. To evaluate the contamination risk of tools used during exhibit examination we have assessed the occurrence and level of DNA transferred between mock casework exhibits, comprised of cotton or glass substrates, and high-risk vectors (scissors, forceps, and gloves). The subsequent impact of such transfer in the profiling of a target sample was also investigated. Dried blood or touch DNA, deposited on the primary substrate, was transferred via the vector to the secondary substrate, which was either DNA-free or contained a target sample (dried blood or touch DNA). Pairwise combinations of both heavy and light contact were applied by each vector in order to simulate various levels of contamination. The transfer of dried blood to DNA-free cotton was observed for all vectors and transfer scenarios, with transfer substantially lower when glass was the substrate. Overall touch DNA transferred less efficiently, with significantly lower transfer rates than blood when transferred to DNA-free cotton; the greatest transfer of touch DNA occurred between cotton and glass substrates. In the presence of a target sample, the detectability of transferred DNA decreased due to the presence of background DNA. Transfer had no impact on the detectability of the target profile, however, in casework scenarios where the suspect profiles are not known, profile interpretation becomes complicated by the addition of contaminating alleles and the probative value of the evidence may be affected. The results of this study reiterate the need for examiners to adhere to stringent laboratory cleaning protocols, particularly in the interest of contamination minimisation, and to reduce the handling of items to prevent intra-item transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consideration of the indirect transfer of 'touch DNA' is increasingly becoming part of criminal investigations. Focus is often concentrated on the actions relating to the pick-up of the relevant DNA and key actions associated with transfer to the exhibit from which the sample in question was collected. There is often a time lapse between such actions. As any contact can influence the gain and/or loss of DNA, it is relevant to have an awareness of what hands touch during everyday activities in order to assist consideration of what may be occurring during potential time lapses within contemplated scenarios. To gain an appreciation of the manner and frequency of hands contacting various surfaces during everyday activities, we analysed several videos of individuals performing a variety of general activities. The findings indicate that several items are touched over a relatively short period of time. Appreciation and consideration of general activities that may have occurred between key focus activities are necessary to assess any impact these may have on what is deposited at the final collection site. The information this provides is imperative when weighting alternative transfer scenario propositions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agrobacterium tumefaciens translocates T-DNA through a polar VirB/D4 type IV secretion (T4S) system. VirC1, a factor required for efficient T-DNA transfer, bears a deviant Walker A and other sequence motifs characteristic of ParA and MinD ATPases. Here, we show that VirC1 promotes conjugative T-DNA transfer by stimulating generation of multiple copies per cell of the T-DNA substrate (T-complex) through pairwise interactions with the processing factors VirD2 relaxase, VirC2, and VirD1. VirC1 also associates with the polar membrane and recruits T-complexes to cell poles, the site of VirB/D4 T4S machine assembly. VirC1 Walker A mutations abrogate T-complex generation and polar recruitment, whereas the native protein recruits T-complexes to cell poles independently of other polar processing factors (VirC2, VirD1) or T4S components (VirD4 substrate receptor, VirB channel subunits). We propose that A. tumefaciens has appropriated a progenitor ParA/MinD-like ATPase to promote conjugative DNA transfer by: (i) nucleating relaxosome assembly at oriT-like T-DNA border sequences and (ii) spatially positioning the transfer intermediate at the cell pole to coordinate substrate-T4S channel docking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organization of transgenes in rice transformed through direct DNA transfer strongly suggests a two-phase integration mechanism. In the “preintegration” phase, transforming plasmid molecules (either intact or partial) are spliced together. This gives rise to rearranged transgenic sequences, which upon integration do not contain any interspersed plant genomic sequences. Subsequently, integration of transgenic DNA into the host genome is initiated. Our experiments suggest that the original site of integration acts as a hot spot, facilitating subsequent integration of successive transgenic molecules at the same locus. The resulting transgenic locus may have plant DNA separating the transgenic sequences. Our data indicate that transformation through direct DNA transfer, specifically particle bombardment, generally results in a single transgenic locus as a result of this two-phase integration mechanism. Transgenic plants generated through such processes may, therefore, be more amenable to breeding programs as the single transgenic locus will be easier to characterize genetically. Results from direct DNA transfer experiments suggest that in the absence of protein factors involved in exogenous DNA transfer through Agrobacterium, the qualitative and/or quantitative efficiency of transformation events is not compromised. Our results cast doubt on the role of Agrobacterium vir genes in the integration process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Contact stains recovered at break-in crime scenes are frequently characterized by mixtures of DNA from several persons. Broad knowledge on the relative contribution of DNA left behind by different users overtime is of paramount importance. Such information might help crime investigators to robustly evaluate the possibility of detecting a specific (or known) individual's DNA profile based on the type and history of an object. To address this issue, a contact stain simulation-based protocol was designed. Fourteen volunteers either acting as first or second object's users were recruited. The first user was required to regularly handle/wear 9 different items during an 8-10-day period, whilst the second user for 5, 30 and 120 min, in three independent simulation sessions producing a total of 231 stains. Subsequently, the relative DNA profile contribution of each individual pair was investigated. Preliminary results showed a progressive increase of the percentage contribution of the second user compared to the first. Interestingly, the second user generally became the major DNA contributor when most objects were handled/worn for 120 min, Furthermore, the observation of unexpected additional alleles will then prompt the investigation of indirect DNA transfer events.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent studies observing the transfer of DNA via examination tools used within forensic laboratories (scissors, forceps and gloves) have highlighted the contamination risk of such implements if protocols following their use and replacement are not adhered to. Whilst these previous studies focus primarily on the transfer of biological substances to a substrate via high-risk vectors, this investigation considers the proportion of DNA that remains on the high-risk vectors following contact with the substrate. Dried blood or touch DNA was deposited on cotton or glass substrates to create mock exhibits. Following primary contact with the deposit, the vector similarly contacted a secondary DNA-free substrate. Combinations of singular and multiple contacts were applied. Immediately following contact with the secondary substrate, the vector was sampled in order to determine the proportion of DNA-containing material remaining on the vectors following contacts. Residual DNA was detected on the vectors in most instances, with the amount retained influenced by the vector, substrates and biological substance applied. The results demonstrate the potential for inter- and intra-exhibit contamination through further contacts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Import of DNA into mammalian nuclei is generally inefficient. Therefore, one of the current challenges in human gene therapy is the development of efficient DNA delivery systems. Here we tested whether bacterial proteins could be used to target DNA to mammalian cells. Agrobacterium tumefaciens, a plant pathogen, efficiently transfers DNA as a nucleoprotein complex to plant cells. Agrobacterium-mediated T-DNA transfer to plant cells is the only known example for interkingdom DNA transfer and is widely used for plant transformation. Agrobacterium virulence proteins VirD2 and VirE2 perform important functions in this process. We reconstituted complexes consisting of the bacterial virulence proteins VirD2, VirE2, and single-stranded DNA (ssDNA) in vitro. These complexes were tested for import into HeLa cell nuclei. Import of ssDNA required both VirD2 and VirE2 proteins. A VirD2 mutant lacking its C-terminal nuclear localization signal was deficient in import of the ssDNA–protein complexes into nuclei. Import of VirD2–ssDNA–VirE2 complexes was fast and efficient, and was shown to depended on importin α, Ran, and an energy source. We report here that the bacterium-derived and plant-adapted protein–DNA complex, made in vitro, can be efficiently imported into mammalian nuclei following the classical importin-dependent nuclear import pathway. This demonstrates the potential of our approach to enhance gene transfer to animal cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The T-DNA transfer apparatus of Agrobacterium tumefaciens mediates the delivery of the T-DNA into plant cells, the transfer of the IncQ plasmid RSF1010 into plant cells, and the conjugal transfer of RSF1010 between Agrobacteria. We show in this report that the Agrobacterium-to-Agrobacterium conjugal transfer efficiencies of RSF1010 increase dramatically if the recipient strain, as well as the donor strain, carries a wild-type Ti plasmid and is capable of vir gene expression. Investigation of possible mechanisms that could account for this increased efficiency revealed that the VirB proteins encoded by the Ti plasmid were required. Although, with the exception of VirB1, all of the proteins that form the putative T-DNA transfer apparatus (VirB1–11, VirD4) are required for an Agrobacterium strain to serve as an RSF1010 donor, expression of only a subset of these proteins is required for the increase in conjugal transfer mediated by the recipient. Specifically, VirB5, 6, 11, and VirD4 are essential donor components but are dispensable for the increased recipient capacity. Defined point mutations in virB9 affected donor and recipient capacities to the same relative extent, suggesting that similar functions of VirB9 are important in both of these contexts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A sensitive and precise in vitro technique for detecting DNA strand discontinuities produced in vivo has been developed. The procedure, a form of runoff DNA synthesis on molecules released from lysed bacterial cells, mapped precisely the position of cleavage of the plasmid pMV158 leading strand origin in Streptococcus pneumoniae and the site of strand scission, nic, at the transfer origins of F and the F-like plasmid R1 in Escherichia coli. When high frequency of recombination strains of E. coli were examined, DNA strand discontinuities at the nic positions of the chromosomally integrated fertility factors were also observed. Detection of DNA strand scission at the nic position of F DNA in the high frequency of recombination strains, as well as in the episomal factors, was dependent on sexual expression from the transmissable element, but was independent of mating. These results imply that not only the transfer origins of extrachromosomal F and F-like fertility factors, but also the origins of stably integrated copies of these plasmids, are subject to an equilibrium of cleavage and ligation in vivo in the absence of DNA transfer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Starburst polyamidoamine dendrimers are a new class of synthetic polymers with unique structural and physical characteristics. These polymers were investigated for the ability to bind DNA and enhance DNA transfer and expression in a variety of mammalian cell lines. Twenty different types of polyamidoamine dendrimers were synthesized, and the polymer structure was confirmed using well-defined analytical techniques. The efficiency of plasmid DNA transfection using dendrimers was examined using two reporter gene systems: firefly luciferase and bacterial beta-galactosidase. The transfections were performed using various dendrimers, and levels of expression of the reporter protein were determined. Highly efficient transfection of a broad range of eukaryotic cells and cell lines was achieved with minimal cytotoxicity using the DNA/dendrimer complexes. However, the ability to transfect cells was restricted to certain types of dendrimers and in some situations required the presence of additional compounds, such as DEAE-dextran, that appeared to alter the nature of the complex. A few cell lines demonstrated enhanced transfection with the addition of chloroquine, indicating endosomal localization of the complexes. The capability of a dendrimer to transfect cells appeared to depend on the size, shape, and number of primary amino groups on the surface of the polymer. However, the specific dendrimer most efficient in achieving transfection varied between different types of cells. These studies demonstrate that Starburst dendrimers can transfect a wide variety of cell types in vitro and offer an efficient method for producing permanently transfected cell lines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Arabidopsis thaliana mutants originally isolated as hypersensitive to irradiation were screened for the ability to be transformed by Agrobacterium transferred DNA (T-DNA). One of four UV-hypersensitive mutants and one of two gamma-hypersensitive mutants tested showed a significant reduction in the frequency of stable transformants compared with radioresistant controls. In a transient assay for T-DNA transfer independent of genomic integration, both mutant lines took up and expressed T-DNA as efficiently as parental lines. These lines are therefore deficient specifically in stable T-DNA integration and thus provide direct evidence for the role of a plant function in that process. As radiation hypersensitivity suggests a deficiency in repair of DNA damage, that plant function may be one that is also involved in DNA repair, possibly, from other evidence, in repair of double-strand DNA breaks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The presence of DNA in a criminal investigation often requires scrutiny in relation to how it came to be where it was found. There is a paucity of data with respect to the extent to which one can assume that the last person handling an object, which has previously been touched by others, will contribute to the DNA profile generated from it. There are limited data in detailing the extent to which any foreign DNA is picked-up from a previously touched object and transferred to subsequently touched objects. This study focuses on DNA transfer and persistence on a knife handle after multiple handlings with the knife by different individuals soon after each other, as well as handprints left on flat DNA-free surfaces immediately after touching a knife handle with a known history of prior handling. The profiles of later handlers of a knife are more prominent than earlier handlers; however, the last handler is not always the major contributor to the profile. Proportional contributions to the profiles retrieved from knife handles vary depending on the individuals touching the knife handle. They can also vary when knife handles have been handled in the same manner by the same individuals in the same sequence on different occasions. Hands readily pickup DNA left on objects by others and transfer it to subsequently touched objects. The quantity of foreign DNA picked up by a hand and deposited on subsequently touched objects diminishes as more DNA-free objects are handled soon after each other. Caution is advised when considering how DNA from different individuals may have been transferred to the object from which it was collected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Agrobacterium-mediated transformation system was extended to two indica cultivars: a widely cultivated breeding line IR-64 and an elite basmati cultivar Karnal Local. Root tips and shoot tips of seedlings, and scutellar-calli derived from mature seeds showed high-efficiency Agrobacterium tumefaciens infection and stable transformation. In addition to the superbinary vector pTOK233 in Agrobacterium strain LBA4404, almost equally high levels of transformation were achieved with a relatively much smaller (13.1 kb) binary vector (pCAMBIA1301) in a supervirulent host strain AGL1. In both cases, as well as in both cultivars, while 60–90% of the infected explants produced calli resistant to the selectable agent hygromycin, 59–75% of such calli tested positive for GUS. A high level (400 μM) of acetosyringone in the preinduction medium for Agrobacterium and a higher level (500 μM) in the cocultivation medium was necessary for an enhancement in transformation frequency of the binary vector to levels comparable to a superbinary. Hygromycin-resistant calli could be produced from all the explants used. Transformants could be regenerated for both cultivars using the superbinary and binary vector, but only for calli of scutellar origin. In addition to the molecular confirmation of hpt and gus gene transfer and transcription, absence of gene sequences outside the transferred DNA (T-DNA) region confirmed absence of any long T-DNA transfer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have tested a methodology for the elimination of the selectable marker gene after Agrobacterium-mediated transformation of barley. This involves segregation of the selectable marker gene away from the gene of interest following co-transformation using a plasmid carrying two T-DNAs, which were located adjacent to each other with no intervening region. A standard binary transformation vector was modified by insertion of a small section composed of an additional left and right T-DNA border, so that the selectable marker gene and the site for insertion of the gene of interest (GOI) were each flanked by a left and right border. Using this vector three different GOIs were transformed into barley. Analysis of transgene inheritance was facilitated by a novel and rapid assay utilizing PCR amplification from macerated leaf tissue. Co-insertion was observed in two thirds of transformants, and among these approximately one quarter had transgene inserts which segregated in the next generation to yield selectable marker-free transgenic plants. Insertion of non-T-DNA plasmid sequences was observed in only one of fourteen SMF lines tested. This technique thus provides a workable system for generating transgenic barley free from selectable marker genes, thereby obviating public concerns regarding proliferation of these genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The principal aim of this study was to investigate the possibility of transference to Escherichia coli of β-lactam resistance genes found in bacteria isolated from ready-to-eat (RTE) Portuguese traditional food. From previous screenings, 128 β-lactam resistant isolates (from different types of cheese and of delicatessen meats), largely from the Enterobacteriaceae family were selected and 31.3% of them proved to transfer resistance determinants in transconjugation assays. Multiplex PCR in donor and transconjugant isolates did not detect bla CTX, bla SHV and bla OXY, but bla TEM was present in 85% of them, while two new TEMs (TEM-179 and TEM-180) were identified in two isolates. The sequencing of these amplicons showed identity between donor and transconjugant genes indicating in vitro plasmid DNA transfer. These results suggest that if there is an exchange of genes in natural conditions, the consumption of RTE foods, particularly with high levels of Enterobacteriaceae, can contribute to the spread of antibiotic resistance.