963 resultados para DNA mutational analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA methylation analysis currently requires complex multistep procedures based on bisulfite conversion of unmethylated cytosines or on methylation-sensitive endonucleases. To facilitate DNA methylation analysis, we have developed a quantitative 1-step assay for DNA methylation analysis.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES This study was undertaken to determine the spectrum and prevalence of mutations in the RYR2-encoded cardiac ryanodine receptor in cases with exertional syncope and normal corrected QT interval (QTc). BACKGROUND Mutations in RYR2 cause type 1 catecholaminergic polymorphic ventricular tachycardia (CPVT1), a cardiac channelopathy with increased propensity for lethal ventricular dysrhythmias. Most RYR2 mutational analyses target 3 canonical domains encoded by <40% of the translated exons. The extent of CPVT1-associated mutations localizing outside of these domains remains unknown as RYR2 has not been examined comprehensively in most patient cohorts. METHODS Mutational analysis of all RYR2 exons was performed using polymerase chain reaction, high-performance liquid chromatography, and deoxyribonucleic acid sequencing on 155 unrelated patients (49% females, 96% Caucasian, age at diagnosis 20 +/- 15 years, mean QTc 428 +/- 29 ms), with either clinical diagnosis of CPVT (n = 110) or an initial diagnosis of exercise-induced long QT syndrome but with QTc <480 ms and a subsequent negative long QT syndrome genetic test (n = 45). RESULTS Sixty-three (34 novel) possible CPVT1-associated mutations, absent in 400 reference alleles, were detected in 73 unrelated patients (47%). Thirteen new mutation-containing exons were identified. Two-thirds of the CPVT1-positive patients had mutations that localized to 1 of 16 exons. CONCLUSIONS Possible CPVT1 mutations in RYR2 were identified in nearly one-half of this cohort; 45 of the 105 translated exons are now known to host possible mutations. Considering that approximately 65% of CPVT1-positive cases would be discovered by selective analysis of 16 exons, a tiered targeting strategy for CPVT genetic testing should be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To review our clinical experience and determine if there are appropriate signs and symptoms to consider POLG sequencing prior to valproic acid (VPA) dosing in patients with seizures. METHODS: Four patients who developed VPA-induced hepatotoxicity were examined for POLG sequence variations. A subsequent chart review was used to describe clinical course prior to and after VPA dosing. RESULTS: Four patients of multiple different ethnicities, age 3-18 years, developed VPA-induced hepatotoxicity. All were given VPA due to intractable partial seizures. Three of the patients had developed epilepsia partialis continua. The time from VPA exposure to liver failure was between 2 and 3 months. Liver failure was reversible in one patient. Molecular studies revealed homozygous p.R597W or p.A467T mutations in two patients. The other two patients showed compound heterozygous mutations, p.A467T/p.Q68X and p.L83P/p.G888S. Clinical findings and POLG mutations were diagnostic of Alpers-Huttenlocher syndrome. CONCLUSION: Our cases underscore several important findings: POLG mutations have been observed in every ethnic group studied to date; early predominance of epileptiform discharges over the occipital region is common in POLG-induced epilepsy; the EEG and MRI findings varying between patients and stages of the disease; and VPA dosing at any stage of Alpers-Huttenlocher syndrome can precipitate liver failure. Our data support an emerging proposal that POLG gene testing should be considered in any child or adolescent who presents or develops intractable seizures with or without status epilepticus or epilepsia partialis continua, particularly when there is a history of psychomotor regression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genetic variability of milk protein genes may influence the nutritive value or processing and functional properties of the milk. While numerous protein variants are known in ruminants, knowledge about milk protein variability in horses is still limited. Mare's milk is, however, produced for human consumption in many countries. Beta-lactoglobulin belonging to the protein family of lipocalins, which are known as common food- and airborne allergens, is a major whey protein. It is absent from human milk and thus a key agent in provoking cow's milk protein allergy. Mare's milk is, however, usually better tolerated by most affected people. Several functions of β-lactoglobulin have been discussed, but its ultimate physiological role remains unclear. In the current study, the open reading frames of the two equine β-lactoglobulin paralogues LGB1 and LGB2 were re-sequenced in 249 horses belonging to 14 different breeds in order to predict the existence of protein variants at the DNA-level. Thereby, only a single signal peptide variant of LGB1, but 10 different putative protein variants of LGB2 were identified. In horses, both genes are expressed and in such this is a striking previously unknown difference in genetic variability between the two genes. It can be assumed that LGB1 is the ancestral paralogue, which has an essential function causing a high selection pressure. As horses have very low milk fat content this unknown function might well be related to vitamin-uptake. Further studies are, however, needed, to elucidate the properties of the different gene products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation, the cytogenetic characteristics of bone marrow cells from 41 multiple myeloma patients were investigated. These cytogenetic data were correlated with the total DNA content as measured by flow cytometry. Both the cytogenetic information and DNA content were then correlated with clinical data to determine if diagnosis and prognosis of multiple myeloma could be improved.^ One hundred percent of the patients demonstrated abnormal chromosome numbers per metaphase. The average chromosome number per metaphase ranged from 42 to 49.9, with a mean of 44.99. The percent hypodiploidy ranged from 0-100% and the percent hyperdiploidy from 0-53%. Detailed cytogenetic analyses were very difficult to perform because of the paucity of mitotic figures and the poor chromosome morphology. Thus, detailed chromosome banding analysis on these patients was impossible.^ Thirty seven percent of the patients had normal total DNA content, whereas 63% had abnormal amounts of DNA (one patient with less than normal amounts and 25 patients with greater than normal amounts of DNA).^ Several clinical parameters were used in the statistical analyses: tumor burden, patient status at biopsy, patient response status, past therapy, type of treatment and percent plasma cells. Only among these clinical parameters were any statistically significant correlations found: pretreatment tumor burden versus patient response, patient biopsy status versus patient response and past therapy versus patient response.^ No correlations were found between percent hypodiploid, diploid, hyperdiploid or DNA content, and the patient response status, nor were any found between those patients with: (a) normal plasma cells, low pretreatment tumor mass burden and more than 50% of the analyzed metaphases with 46 chromosomes; (b) normal amounts of DNA, low pretreatment tumor mass burden and more than 50% of the metaphases with 46 chromosomes; (c) normal amounts of DNA and normal quantities of plasma cells; (d) abnormal amounts of DNA, abnormal amounts of plasma cells, high pretreatment tumor mass burden and less than 50% of the metaphases with 46 chromosomes.^ Technical drawbacks of both cytogenetic and DNA content analysis in these multiple myeloma patients are discussed along with the lack of correlations between DNA content and chromosome number. Refined chromosome banding analysis awaits technical improvements before we can understand which chromosome material (if any) makes up the "extra" amounts of DNA in these patients. None of the correlations tested can be used as diagnostic or prognostic aids for multiple myeloma. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central coiled coil of the essential spindle pole component Spc110p spans the distance between the central and inner plaques of the Saccharomyces cerevisiae spindle pole body (SPB). The carboxy terminus of Spc110p, which binds calmodulin, resides at the central plaque, and the amino terminus resides at the inner plaque from which nuclear microtubules originate. To dissect the functions of Spc110p, we created temperature-sensitive mutations in the amino and carboxy termini. Analysis of the temperature-sensitive spc110 mutations and intragenic complementation analysis of the spc110 alleles defined three functional regions of Spc110p. Region I is located at the amino terminus. Region II is located at the carboxy-terminal end of the coiled coil, and region III is the previously defined calmodulin-binding site. Overexpression of SPC98 suppresses the temperature sensitivity conferred by mutations in region I but not the phenotypes conferred by mutations in the other two regions, suggesting that the amino terminus of Spc110p is involved in an interaction with the γ-tubulin complex composed of Spc97p, Spc98p, and Tub4p. Mutations in region II lead to loss of SPB integrity during mitosis, suggesting that this region is required for the stable attachment of Spc110p to the central plaque. Our results strongly argue that Spc110p links the γ-tubulin complex to the central plaque of the SPB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adenylyl and guanylyl cyclases catalyze the formation of 3′,5′-cyclic adenosine or guanosine monophosphate from the corresponding nucleoside 5′-triphosphate. The guanylyl cyclases, the mammalian adenylyl cyclases, and their microbial homologues function as pairs of homologous catalytic domains. The crystal structure of the rat type II adenylyl cyclase C2 catalytic domain was used to model by homology a mammalian adenylyl cyclase C1-C2 domain pair, a homodimeric adenylyl cyclase of Dictyostelium discoideum, a heterodimeric soluble guanylyl cyclase, and a homodimeric membrane guanylyl cyclase. Mg2+ATP or Mg2+GTP were docked into the active sites based on known stereochemical constraints on their conformation. The models are consistent with the activities of seven active-site mutants. Asp-310 and Glu-432 of type I adenylyl cyclase coordinate a Mg2+ ion. The D310S and D310A mutants have 10-fold reduced Vmax and altered [Mg2+] dependence. The NTP purine moieties bind in mostly hydrophobic pockets. Specificity is conferred by a Lys and an Asp in adenylyl cyclase, and a Glu, an Arg, and a Cys in guanylyl cyclase. The models predict that an Asp from one domain is a general base in the reaction, and that the transition state is stabilized by a conserved Asn-Arg pair on the other domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type II (HTLV-2) use a similar mechanism for –1 translational frameshifting to overcome the termination codon in viral RNA at the end of the gag gene. Previous studies have identified two important RNA signals for frameshifting, the slippery sequence and a downstream stem–loop structure. However, there have been somewhat conflicting reports concerning the individual contributions of these sequences. In this study we have performed a comprehensive mutational analysis of the cis-acting RNA sequences involved in HIV-1 gag–pol and HTLV-2 gag–pro frameshifting. Using an in vitro translation system we determined frameshifting efficiencies for shuffled HIV-1/HTLV-2 RNA elements in a background of HIV-1 or HTLV-2 sequences. We show that the ability of the slippery sequence and stem–loop to promote ribosomal frameshifting is influenced by the flanking upstream sequence and the nucleotides in the spacer element. A wide range of frameshift efficiency rates was observed for both viruses when shuffling single sequence elements. The results for HIV-1/HTLV-2 chimeric constructs represent strong evidence supporting the notion that the viral wild-type sequences are not designed for maximal frameshifting activity but are optimized to a level suited to efficient viral replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA helicases of the DEAD box family are involved in almost all cellular processes involving RNA molecules. Here we describe functional characterization of the yeast RNA helicase Dbp8p (YHR169w). Our results show that Dbp8p is an essential nucleolar protein required for biogenesis of the small ribosomal subunit. In vivo depletion of Dbp8p resulted in a ribosomal subunit imbalance due to a deficit in 40S ribosomal subunits. Subsequent analyses of pre-rRNA processing by pulse–chase labeling, northern hybridization and primer extension revealed that the early steps of cleavage of the 35S precursor at sites A1 and A2 are inhibited and delayed at site A0. Synthesis of 18S rRNA, the RNA moiety of the 40S subunit, is thereby blocked in the absence of Dbp8p. The involvement of Dbp8p as a bona fide RNA helicase in ribosome biogenesis is strongly supported by the loss of Dbp8p in vivo function obtained by site-directed mutagenesis of some conserved motifs carrying the enzymatic properties of the protein family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify determinants that form nonapeptide hormone binding domains of the white sucker Catostomus commersoni [Arg8]vasotocin receptor, chimeric constructs encoding parts of the vasotocin receptor and parts of the isotocin receptor have been analyzed by [(3,5-3H)Tyr2, Arg8]vasotocin binding to membranes of human embryonic kidney cells previously transfected with the different cDNA constructs and by functional expression studies in Xenopus laevis oocytes injected with mutant cRNAs. The results indicate that the N terminus and a region spanning the second extracellular loop and its flanking transmembrane segments, which contains a number of amino acid residues that are conserved throughout the nonapeptide receptor family, contribute to the affinity of the receptor for its ligand. Nonapeptide selectivity, however, is mainly defined by transmembrane region VI and the third extracellular loop. These results are complemented by a molecular model of the vasotocin receptor obtained by aligning its sequence with those of other G-protein coupled receptors as well as that of bacteriorhodopsin. The model indicates that amino acid residues of transmembrane regions II-VII that are located close to the extracellular surface also contribute to the binding of vasotocin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have devised a combinatorial method, restriction endonuclease protection selection and amplification (REPSA), to identify consensus ligand binding sequences in DNA. In this technique, cleavage by a type IIS restriction endonuclease (an enzyme that cleaves DNA at a site distal from its recognition sequence) is prevented by a bound ligand while unbound DNA is cleaved. Since the selection step of REPSA is performed in solution under mild conditions, this approach is amenable to the investigation of ligand-DNA complexes that are either insufficiently stable or not readily separable by other methods. Here we report the use of REPSA to identify the consensus duplex DNA sequence recognized by a G/T-rich oligodeoxyribonucleotide under conditions favoring purine-motif triple-helix formation. Analysis of 47 sequences indicated that recognition between 13 bases on the oligonucleotide 3' end and the duplex DNA was sufficient for triplex formation and indicated the possible existence of a new base triplet, G.AT. This information should help identify appropriate target sequences for purine-motif triplex formation and demonstrates the power of REPSA for investigating ligand-DNA interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Point mutations were selectively introduced into a cDNA for guinea pig estrogen sulfotransferase (gpEST); each construct was then expressed in Chinese hamster ovary K1 cells. The molecular site chosen for study is a conserved GXXGXXK sequence that resembles the P-loop-type nucleotide-binding motif for ATP- and GTP-binding proteins and is located near the C terminus of all steroid and phenol(aryl) sulfotransferases for which the primary structures are known. Preliminary experiments demonstrated that the GXXGXXK motif is essential for binding the activated sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The present study was undertaken to ascertain the relative importance of each individual residue of the motif. While the mutation of a single motif residue had little effect on the interaction between gpEST and PAPS as determined by kinetic analysis and photoaffinity labeling, the mutation of any two residues in concert resulted in an approximate 10-fold increase in the Km for PAPS and reduced photoaffinity labeling. The mutation of all three motif residues resulted in an inactive enzyme and complete loss of photoaffinity labeling. Interestingly, several mutants also displayed a striking effect on the Km for the steroid substrate; double mutants, again, demonstrated greater perturbations (8- to 28-fold increase) than did single mutants. Unexpectedly, whereas the mutation of nonmotif residues had a negligible effect on the Km for PAPS, a marked increase in the Km for the estrogen substrate ( > 30-fold) was noted. On the basis of these findings, it is concluded that the sequence GISGDWKN within the C-terminal domain of gpEST represents a critical component of the active site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of phytochrome B (phyB) in transgenic Arabidopsis results in enhanced deetiolation in red light. To define domains of phyB functionally important for its regulatory activity, we performed chemical mutagenesis of a phyB-overexpressing line and screened for phenotypic revertants in red light. Four phyB-transgene-linked revertants that retain parental levels of full-length, dimeric, and spectrally normal overexpressed phyB were identified among 101 red-light-specific revertants. All carry single amino acid substitutions in the transgene-encoded phyB that reduce activity by 40- to 1000-fold compared to the nonmutagenized parent. The data indicate that the mutant molecules are fully active in photosignal perception but defective in the regulatory activity responsible for signal transfer to downstream components. All four mutations fall within a 62-residue region in the COOH-terminal domain of phyB, with two independent mutations occurring in a single amino acid, Gly-767. Accumulating evidence indicates that the identified region is a critical determinant in the regulatory function of both phyB and phyA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PotE protein is a putrescine-ornithine antiporter found in many gram-negative bacteria. It is a member of the APA family of transporters and has 12 predicted alpha-helical transmembrane spanning segments (TMS). While the substrate binding site has previously been mapped to a region near the surface of the cytoplasmic lipid layer, no structural feature within the periplasmic domains of PotE have been shown to be important for function. We examined the role of the only large outer loop, situated between transmembrane spanning segment 7 and 8, in putrescine uptake. Deletion of the highly conserved amino acids in the region closest to transmembrane spanning segment 7 produced a protein with little activity. Glycine-scanning mutagenesis of this region showed that Val(249) and Leu(254) were required for optimal transporter function. The V249G mutant transported putrescine at a lower maximal rate compared to wild-type (WT) but with the same substrate binding affinity. In contrast, the L254G mutant had a higher substrate affinity. A series of Val(249) mutants indicated that the hydrophobicity of this residue, which is located at or near the membrane surface, is important for PotE function. Secondary structure predictions of the large outer loop indicated the presence of a hydrophobic alpha-helix in the centre with a hydrophobic region at each end suggesting that the loop was not entirely exposed to the aqueous periplasmic space. The study shows that loop 7-8 is important for PotE function, possibly by forming a re-entrant loop in the channel of the transporter. (C) 2003 Elsevier Ltd. All rights reserved.