851 resultados para DENSITY-LIPOPROTEIN OXIDATION
Resumo:
The in vitro antioxidant activity and the protective effect against human low density lipoprotein oxidation of coffees prepared using different degrees of roasting was evaluated. Coffees with the highest amount of brown pigments (dark coffee) showed the highest peroxyl radical scavenging activity. These coffees also protected human low-density lipoprotein (LDL) against oxidation, although green coffee extracts showed more protection. In a different experiment, coffee extracts were incubated with human plasma prior to isolation of LDL particles. This showed, for the first time, that incubation of plasma with dark, but not green coffee extracts protected the LDL against oxidation by copper or by the thermolabile azo compound AAPH. Antioxidants in the dark coffee extracts must therefore have become associated with the LDL particles. Brown compounds, especially those derived from the Maillard reaction, are the compounds most likely to be responsible for this activity.
Resumo:
Apolipoprotein A-IV (apoA-IV) inhibits lipid peroxidation, thus demonstrating potential anti-atherogenic properties. The aim of this study was to investigate how the inhibition of low density lipoprotein (LDL) oxidation was influenced by common apoA-IV isoforms. Recombinant wild type apoA-IV (100 mu g/ml) significantly inhibited the oxidation of LDL (50 mu g protein/ml) by 5 mu M CuSO4 (P < 0.005), but not by 100 mu M CuSO4, suggesting that it may act by binding copper ions. ApoA-IV also inhibited the oxidation of LDL by the water-soluble free-radical generator 2,2'-azobis(amidinopropane) dihydrochloride (AAPH; I mM), as shown by the two-fold increase in the time for half maximal conjugated diene formation (T-1/2; P < 0.05) suggesting it can also scavenge free radicals in the aqueous phase. Compared to wild type apoA-IV, apoA-IV-S347 decreased T-1/2 by 15% (P = 0.036) and apoA-IV-H360 increased T-1/2 by 18% (P = 0.046). All apoA-IV isoforms increased the relative electrophoretic mobility of native LDL, suggesting apoA-IV can bind to LDL and acts as a site-specific antioxidant. The reduced inhibition of LDL oxidation by apoA-IV-S347 compared to wild type apoA-IV may account for the previous association of the APOA4 S347 variant with increased CHD risk and oxidative stress. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this study we examined the potential inhibition by interferon-gamma (IFN gamma) of the early stages of low density lipoprotein (LDL) oxidation mediated by human peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) in Ham's F-10 medium supplemented with physiological amounts of L-tryptophan (Trp). We assessed LDL oxidation by measuring the consumption of LDL's major antioxidant (i.e., alpha-tocopherol) and targets for oxidation (cholesteryllinoleate and cholesterylarachidonate), together with the accumulation of cholesterylester hydroperoxides and the increase in relative electrophoretic mobility of the lipoprotein particle. Exposure of PBMC or MDM to IFN gamma induced the degradation of extracellular Trp with concomitant accumulation of kynurenine, anthranilic and 3-hydroxyanthranilic acid (3HAA) in the culture medium. Formation of 3HAA, but neither Trp degradation nor formation of kynurenine and anthranilic acid, was inhibited by low amounts of diphenylene iodonium (DPI) in a concentration-dependent manner. In contrast to oxidative Trp metabolism, exposure of human PBMC or MDM to IFN gamma failed to induce degradation of arginine, and nitrite was not detected in the cell supernatant, indicating that nitric oxide synthase was not induced under these conditions. Incubation of LDL in Trp-supplemented F-10 medium resulted in a time-dependent oxidation of the lipoprotein that was accelerated in the presence of PBMC or MDM but inhibited strongly in the presence of both cells and IFN gamma, i.e., when Trp degradation and formation of 3HAA were induced. In contrast, when IFN gamma was added to PBMC or MDM in F-10 medium that was virtually devoid of Trp, inhibition of cell-accelerated LDL oxidation was not observed. Exogenous 3HAA added to PBMC or purified monocytes in the absence of IFN gamma also strongly and in a concentration-dependent manner inhibited LDL oxidation. Selective inhibition of IFN gamma-induced formation of 3HAA by DPI caused reversion of the inhibitory action of this cytokine on both PBMC- and MDM-mediated LDL oxidation. These results show that IFN gamma treatment of human PBMC or MDM in vitro attenuates the extent of LDL oxidation caused by these cells, and indicate that Trp degradation with formation of 3HAA is a major contributing factor to this inhibitory activity.
Resumo:
Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]