992 resultados para DEATH RECEPTOR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterized Fas immunoreactivity, functionality and its role in the response to mitomycin-C (MMC) chemotherapy in vitro in cell lines and in vivo in bladder washings from 23 transitional cell carcinoma of the bladder (TCCB) patients, harvested prior to and during MMC intravesical treatment. Having established the importance of functional Fas, we investigated the methylation and exon 9 mutation as mechanisms of Fas silencing in TCCB. For the first time, we report p53 up-regulation in 9/14 and Fas up-regulation in 7/9 TCCB patients during intravesical MMC treatment. Fas immunoreactivity was strong in the TCCB cell line T24 and in 17/20 (85%) tumor samples from patients with advanced TCCB. T24 and HT1376 cells were resistant to MMC and recombinant Fas ligand, whilst RT4 cells were responsive to Fas ligand and MMC. Using RT4 cells as a model, siRNA targeting p53 significantly reduced MMC-induced p53 and Fas up-regulation and stable DN-FADD transfection decreased MMC-induced apoptosis, suggesting that functional Fas enhances chemotherapy responses in a p53-dependent manner. In HT1376 cells, 5-aza-2-deoxycytidine (12 µM) induced Fas immunoreactivity and reversed methylation at CpG site -548 within the Fas promoter. This site was methylated in 13/24 (54%) TCCB patient samples assessed using Methylation-Specific Polymerase Chain Reaction. There was no methylation at either the p53 enhancer region within the first intron or at the SP-1 binding region in the promoter and no mutation within exon 9 in tumor DNA extracted from 38 patients. Methylation at CpG site -548 is a potential target for demethylating drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Death Receptor 5 (DR5) is a pro-apoptotic cell-surface receptor that is a potential therapeutic target in cancer. Despite the potency of DR5-targeting agents in preclinical models, the translation of these effects into the clinic remains disappointing. Herein, we report an alternative approach to exploiting DR5 tumor expression using antibody-targeted, chemotherapy-loaded nanoparticles. We describe the development of an optimized polymer-based nanotherapeutic incorporating both a functionalized polyethylene glycol (PEG) layer and targeting antibodies to limit premature phagocytic clearance whilst enabling targeting of DR5-expressing tumor cells. Using the HCT116 colorectal cancer model, we show that following binding to DR5, the nanoparticles activate caspase 8, enhancing the anti-tumor activity of the camptothecin payload both in vitro and in vivo. Importantly, the combination of nanoparticle-induced DR5 clustering with camptothecin delivery overcomes resistance to DR5-induced apoptosis caused by loss of BAX or overexpression of anti-apoptotic FLIP. This novel approach may improve the clinical activity of DR5-targeted therapeutics while increasing tumor-specific delivery of systemically toxic chemotherapeutics.Molecular Therapy (2014); doi:10.1038/mt.2014.137.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Chronic myeloproliferative disorders (MPDs) are clonal haematopoietic stem cell malignancies characterised by an accumulation of mature myeloid cells in bone marrow and peripheral blood. Deregulation of the apoptotic machinery may be associated with MPD physiopathology. Aims To evaluate expression of death receptors` family members, mononuclear cell apoptosis resistance, and JAK2 allele burden. Subjects and Methods Bone marrow haematopoietic progenitor CD34 cells were separated using the Ficoll-hypaque protocol followed by the Miltenyi CD34 isolation kit, and peripheral blood leukocytes were separated by the Haes-Steril method. Total RNA was extracted by the Trizol method, the High Capacity Kit was used to synthesise cDNA, and real-time PCR was performed using SybrGreen in ABIPrism 7500 equipment. The results of gene expression quantification are given as 2(-Delta Delta Ct). The JAK2 V617F mutation was detected by real-time allelic discrimination PCR assay. Peripheral blood mononuclear cells (PBMCs) were isolated by the Ficoll-hypaque protocol and cultured in the presence of apoptosis inducers. Results In CD34 cells, there was mRNA overexpression for fas, faim and c-flip in polycythaemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis (PMF), as well as fasl in PMF, and dr4 levels were increased in ET. In leukocytes, fas, c-flip and trail levels were increased in PV, and dr5 expression was decreased in ET. There was an association between dr5 and fasl expression and JAK2V617F mutation. PBMCs from patients with PV, ET or PMF showed resistance to apoptosis inducers. Conclusions The results indicate deregulation of apoptosis gene expression, which may be associated with MPD pathogenesis leading to accumulation of myeloid cells in MPDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) is implicated in cellular processes such as apoptosis and cell migration. Its acyl transferase activity cross-links certain proteins, among them transcription factors were described. We show here that the TG2 inhibitor KCC009 reversed resistance to tumor necrosis factor-related apoptosis-inducing factor (TRAIL) in lung cancer cells. Sensitization required upregulation of death receptor 5 (DR5) but not of death receptor 4. Upregulation of DR5 involved the first intron of the DR5 gene albeit it was independent from p53 and nuclear factor kappa B. In conclusion, inhibition of tissue transglutaminase provides an interesting strategy for sensitization to TRAIL-induced apoptosis in p53-deficient lung cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Apoptosis of pancreatic beta-cells is critical in both diabetes development and failure of islet transplantation. The role in these processes of pro- and antiapoptotic Bcl-2 family proteins, which regulate apoptosis by controlling mitochondrial integrity, remains poorly understood. We investigated the role of the BH3-only protein Bid and the multi-BH domain proapoptotic Bax and Bak, as well as prosurvival Bcl-2, in beta-cell apoptosis. RESEARCH DESIGN AND METHODS: We isolated islets from mice lacking Bid, Bax, or Bak and those overexpressing Bcl-2 and exposed them to Fas ligand, tumor necrosis factor (TNF)-alpha, and proinflammatory cytokines or cytotoxic stimuli that activate the mitochondrial apoptotic pathway (staurosporine, etoposide, gamma-radiation, tunicamycin, and thapsigargin). Nuclear fragmentation was measured by flow cytometry. RESULTS: Development and function of islets were not affected by loss of Bid, and Bid-deficient islets were as susceptible as wild-type islets to cytotoxic stimuli that cause apoptosis via the mitochondrial pathway. In contrast, Bid-deficient islets and those overexpressing antiapoptotic Bcl-2 were protected from Fas ligand-induced apoptosis. Bid-deficient islets were also resistant to apoptosis induced by TNF-alpha plus cycloheximide and were partially resistant to proinflammatory cytokine-induced death. Loss of the multi-BH domain proapoptotic Bax or Bak protected islets partially from death receptor-induced apoptosis. CONCLUSIONS: These results demonstrate that Bid is essential for death receptor-induced apoptosis of islets, similar to its demonstrated role in hepatocytes. This indicates that blocking Bid activity may be useful for protection of islets from immune-mediated attack and possibly also in other pathological states in which beta-cells are destroyed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic cholestasis often results in premature death from liver failure with fibrosis; however, the molecular mechanisms contributing to biliary cirrhosis are not demonstrated. In this article, we show that the death signal mediated by TNF-related apoptosis-inducing ligand (TRAIL) receptor 2/death receptor 5 (DR5) may be a key regulator of cholestatic liver injury. Agonistic anti-DR5 monoclonal antibody treatment triggered cholangiocyte apoptosis, and subsequently induced cholangitis and cholestatic liver injury in a mouse strain-specific manner. TRAIL- or DR5-deficient mice were relatively resistant to common bile duct ligation-induced cholestasis, and common bile duct ligation augmented DR5 expression on cholangiocytes, sensitizing mice to DR5-mediated cholangitis. Notably, anti-DR5 monoclonal antibody-induced cholangitis exhibited the typical histological appearance, reminiscent of human primary sclerosing cholangitis. Human cholangiocytes constitutively expressed DR5, and TRAIL expression and apoptosis were significantly elevated in cholangiocytes of human primary sclerosing cholangitis and primary biliary cirrhosis patients. Thus, TRAIL/DR5-mediated apoptosis may substantially contribute to chronic cholestatic disease, particularly primary sclerosing cholangitis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Programed cell death (PCD) is a fundamental biological process that is as essential for the development and tissue homeostasis as cell proliferation, differentiation and adaptation. The main mode of PCD - apoptosis - occurs via specifi c pathways, such as mitochondrial or death receptor pathway. In the developing nervous system, programed death broadly occurs, mainly triggered by the defi ciency of different survival-promoting neurotrophic factors, but the respective death pathways are poorly studied. In one of the best-characterized models, sympathetic neurons deprived of nerve growth factor (NGF) die via the classical mitochondrial apoptotic pathway. The main aim of this study was to describe the death programs activated in these and other neuronal populations by using neuronal cultures deprived of other neurotrophic factors. First, this study showed that the cultured sympathetic neurons deprived of glial cell line-derived neurotrophic factor (GDNF) die via a novel non-classical death pathway, in which mitochondria and death receptors are not involved. Indeed, cytochrome c was not released into the cytosol, Bax, caspase-9, and caspase-3 were not involved, and Bcl-xL overexpression did not prevent the death. This pathway involved activation of mixed lineage kinases and c-jun, and crucially requires caspase-2 and -7. Second, it was shown that deprivation of neurotrophin-3 (NT-3) from cultured sensory neurons of the dorsal root ganglia kills them via a dependence receptor pathway, including cleavage of the NT- 3 receptor TrkC and liberation of a pro-apoptotic dependence domain. Indeed, death of NT-3-deprived neurons was blocked by a dominant-negative construct interfering with TrkC cleavage. Also, the uncleavable mutant of TrkC, replacing the siRNA-silenced endogeneous TrkC, was not able to trigger death upon NT-3 removal. Such a pathway was not activated in another subpopulation of sensory neurons deprived of NGF. Third, it was shown that cultured midbrain dopaminergic neurons deprived of GDNF or brainderived neurotrophic factor (BDNF) kills them by still a different pathway, in which death receptors and caspases, but not mitochondria, are activated. Indeed, cytochrome c was not released into the cytosol, Bax was not activated, and Bcl-xL did not block the death, but caspases were necessary for the death of these neurons. Blocking the components of the death receptor pathway - caspase-8, FADD, or Fas - blocked the death, whereas activation of Fas accelerated it. The activity of Fas in the dopaminergic neurons could be controlled by the apoptosis inhibitory molecule FAIML. For these studies we developed a novel assay to study apoptosis in the transfected dopaminergic neurons. Thus, a novel death pathway, characteristic for the dopaminergic neurons was described. The study suggests death receptors as possible targets for the treatment of Parkinson s disease, which is caused by the degeneration of dopaminergic neurons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has recently attracted attention as a potential therapeutic agent in the treatment of cancer. We assessed the roles of p53, TRAIL receptors, and cellular Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (c-FLIP) in regulating the cytotoxic effects of recombinant TRAIL (rTRAIL) alone and in combination with chemotherapy [5-fluorouracil (5-FU), oxaliplatin, and irinotecan] in a panel of colon cancer cell lines. Using clonogenic survival and flow cytometric analyses, we showed that chemotherapy sensitized p53 wild-type, mutant, and null cell lines to TRAIL-mediated apoptosis. Although chemotherapy treatment did not modulate mRNA or cell surface expression of the TRAIL receptors death receptor 4, death receptor 5, decoy receptor 1, or decoy receptor 2, it was found to down-regulate expression of the caspase-8 inhibitor, c-FLIP. Stable overexpression of the long c-FLIP splice form but not the short form was found to inhibit chemotherapy/rTRAIL-induced apoptosis. Furthermore, siRNA-mediated down-regulation of c-FLIP, particularly the long form, was found to sensitize colon cancer cells to rTRAIL-induced apoptosis. In addition, treatment of a 5-FU-resistant cell line with 5-FU down-regulated c-FLIP expression and sensitized the chemotherapy-resistant cell line to rTRAIL. We conclude that TRAIL-targeted therapies may be used to enhance conventional chemotherapy regimens in colon cancer regardless of tumor p53 status. Furthermore, inhibition of c-FLIP may be a vital accessory strategy for the optimal use of TRAIL-targeted therapies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

c-FLIP is an inhibitor of apoptosis mediated by the death receptors Fas, DR4 and DR5 and is expressed as long (c-FLIPL) and short (c-FLIPS) splice forms. We found that siRNA-mediated silencing of c-FLIP induced spontaneous apoptosis in a panel of p53 wild-type, mutant and null colorectal cancer (CRC) cell lines and that this apoptosis was mediated by caspase 8 and FADD. Further analyses indicated the involvement of DR5 and/or Fas (but not DR4) in regulating apoptosis induced by c-FLIP siRNA. Interestingly, these effects were not dependent on activation of DR5 or Fas by their ligands TRAIL and FasL. Overexpression of c-FLIPL, but not c-FLIPS, significantly decreased spontaneous and chemotherapy-induced apoptosis in HCT116 cells. Further analyses with splice form-specific siRNAs indicated that c-FLIPL was the more important splice form in regulating apoptosis in HCT116, H630 and LoVo cells, although specific knock down of c-FLIPS induced more apoptosis in the HT29 cell line. Importantly, intra-tumoral delivery of c-FLIP-targeted siRNA duplexes induced apoptosis and inhibited the growth of HCT116 xenografts in Balb/c SCID mice. In addition, the growth of c-FLIPL overexpressing CRC xenografts was more rapid than control xenografts, an effect that was significantly enhanced in the presence of chemotherapy. These results indicate that c-FLIP inhibits spontaneous death ligand-independent, death receptor-mediated apoptosis in CRC cells and that targeting c-FLIP may have therapeutic potential for the treatment of colorectal cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: We describe key components of normal and aberrant death receptor pathways, the association of these abnormalities with tumorigenesis in bladder, prostate and renal cancer, and their potential application in novel therapeutic strategies targeted toward patients with cancer.

MATERIALS AND METHODS: A MEDLINE literature search of the key words death receptors, TRAIL (tumor necrosis factor related apoptosis inducing ligand), FAS, bladder, prostate, renal and cancer was done to obtain information for review. A brief overview of the TRAIL and FAS death receptor pathways, and their relationship to apoptosis is described. Mechanisms that lead to nonfunction of these pathways and how they may contribute to tumorigenesis are linked. Current efforts to target death receptor pathways as a therapeutic strategy are highlighted.

RESULTS: Activation of tumor cell expressing death receptors by cytotoxic immune cells is the main mechanism by which the immune system eliminates malignant cells. Death receptor triggering induces a caspase cascade, leading to tumor cell apoptosis. Receptor gene mutation or hypermethylation, decoy receptor or splice variant over expression, and downstream inhibitor interference are examples of the ways that normal pathway functioning is lost in cancers of the bladder and prostate. Targeting death receptors directly through synthetic ligand administration and blocking downstream inhibitor molecules with siRNA or antisense oligonucleotides represent novel therapeutic strategies under development.

CONCLUSIONS: Research into the death receptor pathways has demonstrated the key role that pathway aberrations have in the initiation and progression of malignancies of the bladder, prostate and kidney. This new understanding has resulted in exciting approaches to restore the functionality of these pathways as a novel therapeutic strategy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: In recent years, much progress has been made in the treatment of multiple myeloma. However, a major limitation of existing chemotherapeutic drugs is the eventual emergence of resistance; hence, the development of novel agents with new mechanisms of action is pertinent. Here, we describe the activity and mechanism of action of pyrrolo-1,5-benzoxazepine-15 (PBOX-15), a novel microtubule-targeting agent, in multiple myeloma cells.

Methods: The anti-myeloma activity of PBOX-15 was assessed using NCI-H929, KMS11, RPMI8226, and U266 cell lines, and primary myeloma cells. Cell cycle distribution, apoptosis, cytochrome c release, and mitochondrial inner membrane depolarisation were analysed by flow cytometry; gene expression analysis was carried out using TaqMan Low Density Arrays; and expression of caspase-8 and Bcl-2 family of proteins was assessed by western blot analysis.

Results: Pyrrolo-1,5-benzoxazepine-15 induced apoptosis in ex vivo myeloma cells and in myeloma cell lines. Death receptor genes were upregulated in both NCI-H929 and U266 cell lines, which displayed the highest and lowest apoptotic responses, respectively, following treatment with PBOX-15. The largest increase was detected for the death receptor 5 (DR5) gene, and cotreatment of both cell lines with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the DR5 ligand, potentiated the apoptotic response. In NCI-H929 cells, PBOX-15-induced apoptosis was shown to be caspase-8 dependent, with independent activation of extrinsic and intrinsic apoptotic pathways. A caspase-8-dependent decrease in expression of Bim(EL) preceded downregulation of other Bcl-2 proteins (Bid, Bcl-2, Mcl-1) in PBOX-15-treated NCI-H929 cells.

Conclusion: PBOX-15 induces apoptosis and potentiates TRAIL-induced cell death in multiple myeloma cells. Thus, PBOX-15 represents a promising agent, with a distinct mechanism of action, for the treatment of this malignancy. British Journal of Cancer (2011) 104, 281-289. doi: 10.1038/sj.bjc.6606035 www.bjcancer.com Published online 21 December 2010 (C) 2011 Cancer Research UK

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Innate immunity represents the first line of defence against invading pathogens. It consists of an initial inflammatory response that recruits white blood cells to the site of infection in an effort to destroy and eliminate the pathogen. Some pathogens replicate within host cells, and cell death by apoptosis is an important effector mechanism to remove the replication niche for such microbes. However, some microbes have evolved evasive strategies to block apoptosis, and in these cases host cells may employ further countermeasures, including an inflammatory form of cell death know as necroptosis. This review aims to highlight the importance of the RIP kinase family in controlling these various defence strategies. RIP1 is initially discussed as a key component of death receptor signalling and in the context of dictating whether a cell triggers a pathway of pro-inflammatory gene expression or cell death by apoptosis. The molecular and functional interplay of RIP1 and RIP3 is described, especially with respect to mediating necroptosis and as key mediators of inflammation. The function of RIP2, with particular emphasis on its role in NOD signalling, is also explored. Special attention is given to emphasizing the physiological and pathophysiological contexts for these various functions of RIP kinases.