305 resultados para Cyclodextrin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Council for Scientific and Technological Development (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlations between GABA(A) receptor (GABA(A)-R) activity and molecular organization of synaptosomal membranes (SM) were studied along the protocol for cholesterol (Cho) extraction with beta-cyclodextrin (beta-CD). The mere pre-incubation (PI) at 37A degrees C accompanying the beta-CD treatment was an underlying source of perturbations increasing [H-3]-FNZ maximal binding (70%) and K (d) (38%), plus a stiffening of SMs' hydrocarbon core region. The latter was inferred from an increased compressibility modulus (K) of SM-derived Langmuir films, a blue-shifted DPH fluorescence emission spectrum and the hysteresis in DPH fluorescence anisotropy (A (DPH)) in SMs submitted to a heating-cooling cycle (4-37-4A degrees C) with A (DPH,heating) < A (DPH,cooling). Compared with PI samples, the beta-CD treatment reduced B (max) by 5% which correlated with a 45%-decrement in the relative Cho content of SM, a decrease in K and in the order parameter in the EPR spectrum of a lipid spin probe labeled at C5 (5-SASL), and significantly increased A (TMA-DPH). PI, but not beta-CD treatment, could affect the binding affinity. EPR spectra of 5-SASL complexes with beta-CD-, SM-partitioned, and free in solution showed that, contrary to what is usually assumed, beta-CD is not completely eliminated from the system through centrifugation washings. It was concluded that beta-CD treatment involves effects of at least three different types of events affecting membrane organization: (a) effect of PI on membrane annealing, (b) effect of residual beta-CD on SM organization, and (c) Cho depletion. Consequently, molecular stiffness increases within the membrane core and decreases near the polar head groups, leading to a net increase in GABA(A)-R density, relative to untreated samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, we demonstrate the physical and chemical characterizations of the supramolecular complex formed between beta-cyclodextrin (beta CD) and bradykinin potentiating nonapeptide (BPP9a), an endogenous toxin found in Bothrops jararaca. Circular dichroism results indicate a conformational change in the BPP9a secondary structure upon its complexation with beta CD. Nuclear magnetic resonance results, mainly from NOESY experiments, and theoretical calculations showed a favorable interaction between the tryptophan residue of BPP9a and the beta CD cavity. Thermodynamic inclusion parameters were investigated by isothermal titration calorimetry, demonstrating that beta CD/BPP9a complex formation is an exothermic process that results in a reduction in entropy. Additionally, in vitro degradation study of BPP9a against trypsin (37 degrees C, pH 7.2) showed higher stability of peptide in presence of beta CD. This beta CD/BPP9a complex, which presents new chemical properties arising from the peptide inclusion process, may be useful as an antihypertensive drug in oral pharmaceutical formulations. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this investigation, the study of inclusion complexes formation between p-cymene and beta-cyclodextrin using the methods of physical mixture, paste (PC) and slurry (SC), was evaluated. The results of DSC and TG/DTG showed that the products prepared by PC and SC methods were able to incorporate greater amounts of p-cymene, as evidenced by the weight loss of 7.15 and 3.97%, respectively, which occurred between 120 and 270 A degrees C. SEM images showed decreased size of the household, especially in the SC product. The absorption bands in the IR spectrum, characteristic of p-cymene, were also identified in the preparations, indicating the presence of the compound in the complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zusammenfassung In der vorliegenden Arbeit wurden Polymerisationseigenschaften hydrophober Monomere untersucht, die mittels methyliertem b-Cyclodextrin (me-b-CD) als Wirt/Gast-Komplexe homogen in die wäßrige Phase überführt wurden. Mit diesem Verfahren steht eine neue Variante der Polymerisation hydrophober Monomere in Wasser zur Verfügung.Die Charakterisierung der Monomer/CD-Komplexe erfolgte mittels Röntgenstrukturanalyse und 1H-NMR-Spektroskopie: steigende Größe der Gast-Komponente erhöht die Wechselwirkungen zum CD. Zur Untersuchung der Polymerisationsreaktion wurden Copolymerisationsparameter von Komplexen und Übertragungskonstanten von Mercaptoverbindungen bei Polymerisationen von Komplexen ermittelt. In Abhängigkeit der Größe der Gastkomponente und ihrer Wasserlöslichkeit resultieren unterschiedliche Reaktivitäten relativ zu Polymerisationen unkomplexierter Reaktanden in organisch-wäßriger Lösung. Außerdem wurden Copolymerisationen zwischen hydrophoben, me-b-CD-komplexierten Monomeren und wasserlöslichen Monomeren untersucht wie z.B. N-Isopropylacrylamid oder Natrium-4-(acrylamido)phenyldiazosulfonat, dessen Copolymerisation mit Styrol bislang nicht möglich war. Eine weitere Aufgabe war die Herstellung wasserstoffbrückenbindender Polymere. Hierzu wurden assoziationsfähige Monomere hergestellt und mit Methylmethacrylat copolymerisiert. Lösungen der Copolymere wurden rheologisch untersucht. Die Lösungen besitzen hohe Nullscherviskositäten bei 20°C und sind strukturviskos. Die Untersuchung der Temperaturabhängigkeit der Nullscherviskositäten ergab insbesondere bei der Lösung von Poly(N-(methacryl-2-ethyl)-N'-(3-amino-(1,2,4-triazol-2-yl))harnstoff-co-methylmethacrylat) bei niedrigen Temperaturen eine hohe Fließaktivierungsenergie, die zu höheren Temperaturen sank. Die komplexe Viskosität dieser Lösung fiel mit zunehmender Temperatur zunächst ab, stieg dann wieder an und sank erneut. Mittels DSC-Messungen konnten Phasenübergänge für dieses Fließverhalten verantwortlich gemacht werden. Außerdem kann Poly(N-(methacryl-2-ethyl)-N'-(3-amino-(1,2,4-triazol-2-yl))harnstoff-co-methylmethacrylat) thermisch vernetzen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to contribute to the development of new multifunctional nanocarriers for improved encapsulation and delivery of anticancer and antiviral drugs. The work focused on water soluble and biocompatible oligosaccharides, the cyclodextrins (CyDs), and a new family of nanostructured, biodegradable carrier materials made of porous metal-organic frameworks (nanoMOFs). The drugs of choice were the anticancer doxorubicin (DOX), azidothymidine (AZT) and its phosphate derivatives and artemisinin (ART). DOX possesses a pharmacological drawback due to its self-aggregation tendency in water. The non covalent binding of DOX to a series of CyD derivatives, such as g-CyD, an epichlorohydrin crosslinked b-CyD polymer (pb-CyD) and a citric acid crosslinked g-CyD polymer (pg-CyD) was studied by UV visible absorption, circular dichroism and fluorescence. Multivariate global analysis of multiwavelength data from spectroscopic titrations allowed identification and characterization of the stable complexes. pg-CyD proved to be the best carrier showing both high association constants and ability to monomerize DOX. AZT is an important antiretroviral drug. The active form is AZT-triphosphate (AZT-TP), formed in metabolic paths of low efficiency. Direct administration of AZT-TP is limited by its poor stability in biological media. So the development of suitable carriers is highly important. In this context we studied the binding of some phosphorilated derivatives to nanoMOFs by spectroscopic methods. The results obtained with iron(III)-trimesate nanoMOFs allowed to prove that the binding of these drugs mainly occurs by strong iono-covalent bonds to iron(III) centers. On the basis of these and other results obtained in partner laboratories, it was possible to propose this highly versatile and “green” carrier system for delivery of phosphorylated nucleoside analogues. The interaction of DOX with nanoMOFs was also studied. Finally the binding of the antimalarial drug, artemisinin (ART) with two cyclodextrin-based carriers,the pb-CyD and a light responsive bis(b-CyD) host, was also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular interactions between the host molecule, perthiolated beta-cyclodextrin (CD), and the guest molecules, adamantaneacetic acid (AD) and ferroceneacetic acid (FC), have been inestigated theoretically in both the gas and aqueous phases. The major computations have been carried out at the theoretical levels, RHF/6-31G and B3LYP/6- 31G. MP2 electronic energies were also computed based at the geometries optimized by both the RHF and B3LYP methods in the gas phase to establish a better estimate of the correlation effect. The solvent phase computations were completed at the RHF/6-31G and B3LYP/6-31G levels using the PCM model. The most stable structures optimized in gas phase by both the RHF and B3LYP methods were used for the computations in solution. A method to systematically manipulate the relative position and orientation between the interacting molecules is proposed. In the gas phase, six trials with different host-guest relative positions and orientations were completed successfully with the B3LYP method for both the CD-AD and CD-FC complexes. Only four trials were completed with RHF method. In the gas phase, the best results from the RHF method gives for the association Gibbs free energy (ΔG°) values equal to -32.21kj/mol for CD-AD and -25.73kj/mol for CD-FC. And the best results from the B3LYP method have ΔG° equal to -47.57kj/mol for CD-AD and -41.09kj/mol for CD-FC. The MP2 correction significantly lowers ΔG° based on the geometries from both methods. For the RHF structure, the MP2 computations lowered ΔG° to -60.64kj/mol for CD-AD and -54.10 for CD-FC. For the structure from the B3LYP method, it was reduced to -59.87 kj/mol for CD-AD and -54.84 kj/mol for CDFC. The RHF solvent phase calculations yielded following results: ΔG°(aq) equals 107.2kj/mol for CD-AD and 111.4kj/mol for CD-FC. Compared with the results from the RHF method, the B3LYP method provided clearly better solvent phase results with ΔG° (aq) equal to 38.64kj/mol for CD-AD and 39.61kj/mol for CD-FC. These results qualitatively explain the experimental observations. However quantitatively they are in poor agreement with the experimental values available in the literature and those recently published by Liu et al. And the reason is believed to be omission of hydrophobic contribution to the association. Determining the global geometrical minima for these very large systems was very difficult and computationally time consuming, but after a very thorough search, these were identified. A relevant result of this search is that when the complexes, CD-AD and CD-FC, are formed, the AD and FC molecules are only partially embedded inside the CD cavity. The totally embedded complexes were found to have significantly higher energies. The semiempirical method, ZINDO, was employed to investigate the effect of complexation on the first electronic excitation of CD anchored to a metal nano-particle. The computational results revealed that after complexation to FC, the transition intensity declines to about 25% of the original value, and after complexation with AD, the intensity drops almost 50%. The tighter binding and transition intensity of CD-AD qualitatively agrees with the experimental result that the addition of AD to a solution of CD and FC restores the fluorescence of CD that was quenched by the addition of FC. A method to evaluate the “hydrophobic force” effect is proposed for future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forces required for the detachment of ferrocene (Fc) from β-cyclodextrin (βCD) in a single host (βCD)–guest (Fc) complex were investigated using force spectroscopy under electrochemical conditions. The redox state of the guest Fc moiety as well as the structure of the supporting matrix was found to decisively affect the nanomechanical properties of the complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-dimensional dynamic computer simulation was employed to investigate the separation and migration order change of ketoconazole enantiomers at low pH in presence of increasing amounts of (2-hydroxypropyl)-β-cyclodextrin (OHP-β-CD). The 1:1 interaction of ketoconazole with the neutral cyclodextrin was simulated under real experimental conditions and by varying input parameters for complex mobilities and complexation constants. Simulation results obtained with experimentally determined apparent ionic mobilities, complex mobilities, and complexation constants were found to compare well with the calculated separation selectivity and experimental data. Simulation data revealed that the migration order of the ketoconazole enantiomers at low (OHP-β-CD) concentrations (i.e. below migration order inversion) is essentially determined by the difference in complexation constants and at high (OHP-β-CD) concentrations (i.e. above migration order inversion) by the difference in complex mobilities. Furthermore, simulations with complex mobilities set to zero provided data that mimic migration order and separation with the chiral selector being immobilized. For the studied CEC configuration, no migration order inversion is predicted and separations are shown to be quicker and electrophoretic transport reduced in comparison to migration in free solution. The presented data illustrate that dynamic computer simulation is a valuable tool to study electrokinetic migration and separations of enantiomers in presence of a complexing agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cyclodextrin dimer has been synthesized with two β-cyclodextrins linked by a flexible chain containing a carbon–carbon double bond. This dimer binds and solubilizes a phthalocyanine-based photosensitizer that generates singlet oxygen on irradiation. When the complex is irradiated, the singlet oxygen cleaves the carbon–carbon link, and the cyclodextrins are released, liberating the photosensitizer into the light path. Ideas about how this phenomenon could be used to make photodynamic tumor therapy into a more selective process are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of cholesterol for endocytosis has been investigated in HEp-2 and other cell lines by using methyl-β-cyclodextrin (MβCD) to selectively extract cholesterol from the plasma membrane. MβCD treatment strongly inhibited endocytosis of transferrin and EGF, whereas endocytosis of ricin was less affected. The inhibition of transferrin endocytosis was completely reversible. On removal of MβCD it was restored by continued incubation of the cells even in serum-free medium. The recovery in serum-free medium was inhibited by addition of lovastatin, which prevents cholesterol synthesis, but endocytosis recovered when a water-soluble form of cholesterol was added together with lovastatin. Electron microscopical studies of MβCD-treated HEp-2 cells revealed that typical invaginated caveolae were no longer present. Moreover, the invagination of clathrin-coated pits was strongly inhibited, resulting in accumulation of shallow coated pits. Quantitative immunogold labeling showed that transferrin receptors were concentrated in coated pits to the same degree (approximately sevenfold) after MβCD treatment as in control cells. Our results therefore indicate that although clathrin-independent (and caveolae-independent) endocytosis still operates after removal of cholesterol, cholesterol is essential for the formation of clathrin-coated endocytic vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-Cyclodextrin (CD) dimers (n = 11) were synthesized and tested against eight enzymes, seven of which were dimeric or tetrameric, for inhibitor activity. Initial screening showed that only l-lactate dehydrogenase and citrate synthase were inhibited but only by two specific CD dimers in which two β-CDs were linked on the secondary face by a pyridine-2,6-dicarboxylic group. Further investigation suggested that these CD dimers inhibit the activity of l-lactate dehydrogenase and citrate synthase at least in part by disruption of protein–protein aggregation.