996 resultados para Curricula.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the context of debate about the state of accounting education in general, introductory accounting subjects have been the target of considerable criticism, particularly in terms of narrow content, technical focus, use of transmissive models of teaching, and inattention to the development of students‟ generic skills. This paper reports on the results of an exploratory study of these issues in introductory accounting and which involved the review of subject outlines and prescribed textbooks, and the conduct of a cross-sectional survey of the introductory accounting teaching coordinators in Australian universities (n=21). The primary aims of the study were to establish and apply benchmarks in evaluating existing curricula with respect to subject orientation, learning objectives, topics, teaching delivery, learning strategies, and assessment. The results of our study suggest that traditional approaches to subject content and delivery continue to dominate, with limited indicators of innovations to enhance the diversity and quality of learning experiences and learning outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper argues for a future-oriented, inclusion of Engineering Model Eliciting Activities (EngMEAs) in elementary mathematics curricula. In EngMEAs students work with meaningful engineering problems that capitalise on and extend their existing mathematics and science learning, to develop, revise and document powerful models, while working in groups. The models developed by six groups of 12-year students in solving the Natural Gas activity are presented. Results showed that student models adequately solved the problem, although student models did not take into account all the data provided. Student solutions varied to the extent students employed the engineering context in their models and to their understanding of the mathematical concepts involved in the problem. Finally, recommendations for implementing EngMEAs and for further research are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curriculum demands continue to increase on school education systems with teachers at the forefront of implementing syllabus requirements. Education is reported frequently as a solution to most societal problems and, as a result of the world’s information explosion, teachers are expected to cover more and more within teaching programs. How can teachers combine subjects in order to capitalise on the competing educational agendas within school timeframes? Fusing curricula requires the bonding of standards from two or more syllabuses. Both technology and ICT complement the learning of science. This study analyses selected examples of preservice teachers’ overviews for fusing science, technology and ICT. These program overviews focused on primary students and the achievement of two standards (one from science and one from either technology or ICT). These primary preservice teachers’ fused-curricula overviews included scientific concepts and related technology and/or ICT skills and knowledge. Findings indicated a range of innovative curriculum plans for teaching primary science through technology and ICT, demonstrating that these subjects can form cohesive links towards achieving the respective learning standards. Teachers can work more astutely by fusing curricula; however further professional development may be required to advance thinking about these processes. Bonding subjects through their learning standards can extend beyond previous integration or thematic work where standards may not have been assessed. Education systems need to articulate through syllabus documents how effective fusing of curricula can be achieved. It appears that education is a key avenue for addressing societal needs, problems and issues. Education is promoted as a universal solution, which has resulted in curriculum overload (Dare, Durand, Moeller, & Washington, 1997; Vinson, 2001). Societal and curriculum demands have placed added pressure on teachers with many extenuating education issues increasing teachers’ workloads (Mobilise for Public Education, 2002). For example, as Australia has weather conducive for outdoor activities, social problems and issues arise that are reported through the media calling for action; consequently schools have been involved in swimming programs, road and bicycle safety programs, and a wide range of activities that had been considered a parental responsibility in the past. Teachers are expected to plan, implement and assess these extra-curricula activities within their already overcrowded timetables. At the same stage, key learning areas (KLAs) such as science and technology are mandatory requirements within all Australian education systems. These systems have syllabuses outlining levels of content and the anticipated learning outcomes (also known as standards, essential learnings, and frameworks). Time allocated for teaching science in obviously an issue. In 2001, it was estimated that on average the time spent in teaching science in Australian Primary Schools was almost an hour per week (Goodrum, Hackling, & Rennie, 2001). More recently, a study undertaken in the U.S. reported a similar finding. More than 80% of the teachers in K-5 classrooms spent less than an hour teaching science (Dorph, Goldstein, Lee, et al., 2007). More importantly, 16% did not spend teaching science in their classrooms. Teachers need to learn to work smarter by optimising the use of their in-class time. Integration is proposed as one of the ways to address the issue of curriculum overload (Venville & Dawson, 2005; Vogler, 2003). Even though there may be a lack of definition for integration (Hurley, 2001), curriculum integration aims at covering key concepts in two or more subject areas within the same lesson (Buxton & Whatley, 2002). This implies covering the curriculum in less time than if the subjects were taught separately; therefore teachers should have more time to cover other educational issues. Expectedly, the reality can be decidedly different (e.g., Brophy & Alleman, 1991; Venville & Dawson, 2005). Nevertheless, teachers report that students expand their knowledge and skills as a result of subject integration (James, Lamb, Householder, & Bailey, 2000). There seems to be considerable value for integrating science with other KLAs besides aiming to address teaching workloads. Over two decades ago, Cohen and Staley (1982) claimed that integration can bring a subject into the primary curriculum that may be otherwise left out. Integrating science education aims to develop a more holistic perspective. Indeed, life is not neat components of stand-alone subjects; life integrates subject content in numerous ways, and curriculum integration can assist students to make these real-life connections (Burnett & Wichman, 1997). Science integration can provide the scope for real-life learning and the possibility of targeting students’ learning styles more effectively by providing more than one perspective (Hudson & Hudson, 2001). To illustrate, technology is essential to science education (Blueford & Rosenbloom, 2003; Board of Studies, 1999; Penick, 2002), and constructing technology immediately evokes a social purpose for such construction (Marker, 1992). For example, building a model windmill requires science and technology (Zubrowski, 2002) but has a key focus on sustainability and the social sciences. Science has the potential to be integrated with all KLAs (e.g., Cohen & Staley, 1982; Dobbs, 1995; James et al., 2000). Yet, “integration” appears to be a confusing term. Integration has an educational meaning focused on special education students being assimilated into mainstream classrooms. The word integration was used in the late seventies and generally focused around thematic approaches for teaching. For instance, a science theme about flight only has to have a student drawing a picture of plane to show integration; it did not connect the anticipated outcomes from science and art. The term “fusing curricula presents a seamless bonding between two subjects; hence standards (or outcomes) need to be linked from both subjects. This also goes beyond just embedding one subject within another. Embedding implies that one subject is dominant, while fusing curricula proposes an equal mix of learning within both subject areas. Primary education in Queensland has eight KLAs, each with its established content and each with a proposed structure for levels of learning. Primary teachers attempt to cover these syllabus requirements across the eight KLAs in less than five hours a day, and between many of the extra-curricula activities occurring throughout a school year (e.g., Easter activities, Education Week, concerts, excursions, performances). In Australia, education systems have developed standards for all KLAs (e.g., Education Queensland, NSW Department of Education and Training, Victorian Education) usually designated by a code. In the late 1990’s (in Queensland), “core learning outcomes” for strands across all KLA’s. For example, LL2.1 for the Queensland Education science syllabus means Life and Living at Level 2 standard number 1. Thus, a teacher’s planning requires the inclusion of standards as indicated by the presiding syllabus. More recently, the core learning outcomes were replaced by “essential learnings”. They specify “what students should be taught and what is important for students to have opportunities to know, understand and be able to do” (Queensland Studies Authority, 2009, para. 1). Fusing science education with other KLAs may facilitate more efficient use of time and resources; however this type of planning needs to combine standards from two syllabuses. To further assist in facilitating sound pedagogical practices, there are models proposed for learning science, technology and other KLAs such as Bloom’s Taxonomy (Bloom, 1956), Productive Pedagogies (Education Queensland, 2004), de Bono’s Six Hats (de Bono, 1985), and Gardner’s Multiple Intelligences (Gardner, 1999) that imply, warrant, or necessitate fused curricula. Bybee’s 5 Es, for example, has five levels of learning (engage, explore, explain, elaborate, and evaluate; Bybee, 1997) can have the potential for fusing science and ICT standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 21st century's global economy, the new challenges facing the engineering profession have arrived, confirming the need to restructure engineering curricula, teaching and learning practices, and processes, including assessment. Possessing merely technical knowledge no longer guarantees an engineering graduate a successful career. And while all countries are facing this dilemma, India is struggling the most. It has been argued that most Indian engineering educational institutions struggle with the systemic problem of centralisation coupled with an archaic examination system that is detrimental to student learning. This article examines some internationally renowned educational institutions that are embracing the growing importance of non-technical subjects and soft skills in 21st century engineering curricula. It will then examine the problems that India faces in doing the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 21st century's global economy, the new challenges facing the engineering profession have arrived, confirming the need to restructure engineering curricula, teaching and learning practices, and processes, including assessment. Possessing merely technical knowledge no longer guarantees an engineering graduate a successful career. And while all countries are facing this dilemma, India is struggling the most. It has been argued that most Indian engineering educational institutions struggle with the systemic problem of centralisation coupled with an archaic examination system that is detrimental to student learning. This article examines some internationally renowned educational institutions that are embracing the growingimportance of non-technical subjects and soft skills in 21st century engineering curricula. It will then examine the problems that India faces in doing the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates a way to systematically integrate information literacy (IL) into an undergraduate academic programme and develops a model for integrating information literacy across higher education curricula. Curricular integration of information literacy in this study means weaving information literacy into an academic curriculum. In the associated literature, it is also referred to as the information literacy embedding approach or the intra-curricular approach. The key findings identified from this study are presented in 4 categories: the characteristics of IL integration; the key stakeholders in IL integration; IL curricular design strategies; and the process of IL curricular integration. Three key characteristics of the curricular integration of IL are identified: collaboration and negotiation, contextualisation and ongoing interaction with information. The key stakeholders in the curricular integration of IL are recognised as the librarians, the course coordinators and lecturers, the heads of faculties or departments, and the students. Some strategies for IL curricular design include: the use of IL policies and standards in IL curricular design; the combination of face to face and online teaching as an emerging trend; the use of IL assessment tools which play an important role in IL integration. IL can be integrated into the intended curriculum (what an institution expects its students to learn), the offered curriculum (what the teachers teach) and the received curriculum (what students actually learn). IL integration is a process of negotiation, collaboration and the implementation of the intended curriculum. IL can be integrated at different levels of curricula such as: institutional, faculty, departmental, course and class curriculum levels. Based on these key findings, an IL curricular integration model is developed. The model integrates curriculum, pedagogy and learning theories, IL theories, IL guidelines and the collaboration of multiple partners. The model provides a practical approach to integrating IL into multiple courses across an academic degree. The development of the model was based on the IL integration experiences of various disciplines in three universities and the implementation experience of an engineering programme at another university; thus it may be of interest to other disciplines. The model has the potential to enhance IL teaching and learning, curricular development and to implement graduate attributes in higher education. Sociocultural theories are applied to the research process and IL curricular design of this study. Sociocultural theories describe learning as being embedded within social events and occurring as learners interact with other people, objects, and events in a collaborative environment. Sociocultural theories are applied to explore how academic staff and librarians experience the curricular integration of IL; they also support collaboration in the curricular integration of IL and the development of an IL integration model. This study consists of two phases. Phase I (2007) was the interview phase where both academic staff and librarians at three IL active universities were interviewed. During this phase, attention was paid specifically to the practical process of curricular integration of IL and IL activity design. Phase II, the development phase (2007-2008), was conducted at a fourth university. This phase explores the systematic integration of IL into an engineering degree from Year 1 to Year 4. Learning theories such as sociocultural theories, Bloom’s Taxonomy and IL theories are used in IL curricular development. Based on the findings from both phases, an IL integration model was developed. The findings and the model contribute to IL education, research and curricular development in higher education. The sociocultural approach adopted in this study also extends the application of sociocultural theories to the IL integration process and curricular design in higher education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper critiques our experiences as non-Indigenous Australian educators of working with numerous embedding Indigenous perspectives curricular projects at an Australian university. Reporting on these project outcomes alone, while useful in identifying limitations, does not illustrate ways in which future embedding and decolonising projects can persist and evolve. Deeper analysis is required of the ways in which Indigenous knowledge and perspectives are perceived, and what ‘embedding’ IK in university curricula truly means to various educational stakeholders. To achieve a deeper analysis and propose ways to invigorate the continuing decolonisation of Australian university curricula, this paper critically interrogates the methodology and conceptualisation of Indigenous knowledge in embedding Indigenous perspectives (EIP) in the university curriculum using tenets of critical race theory. Accordingly, we conduct this analysis from the standpoint that EIP should not subscribe to the luxury of independence of scholarship from politics and activism. The learning objective is to create a space to legitimise politics in the intellectual / academic realm (Dei, 2008, p. 10). We conclude by arguing that critical race theory’s emancipatory, future and action-oriented goals for curricula (Dei, 2008) would enhance effective and sustainable embedding initiatives, and ultimately, preventing such initiatives from returning to the status quo (McLaughlin & Whatman, 2008).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition of Indigenous knowledge in western academic institutions challenges colonial discourses which have informed and shaped knowledge about Indigenous peoples, cultures and histories. Deeper analysis is required of the ways in which Indigenous knowledge and perspectives are perceived, and the processes through which university curricula can accommodate Indigenous knowledge in teaching and learning. To achieve this deeper analysis, and to invigorate the continuing decolonisation of Australian university curricula, this paper critically interrogates the methodology and conceptualisation of Indigenous knowledge in embedding Indigenous perspectives (EIP) projects in the university curriculum by drawing from tenets of critical race theory and the cultural interface (Nakata, 2007). Accordingly, we conduct this analysis from the standpoint that Indigenous knowledge in university curricula should not subscribe to the luxury of independence of scholarship from politics and activism. The learning objective is to create a space to legitimise politics in the intellectual / academic realm (Dei, 2008, p. 10). We conclude by arguing that critical race theory’s emancipatory, future and action-oriented goals for curricula (Dei, 2008) would enhance effective and sustainable embedding initiatives, and ultimately, preventing such initiatives from returning to the status quo (McLaughlin & Whatman, 2008).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We wished to explore the ways in which palliative care is included in undergraduate health services curricula in Australia and the barriers to, and opportunities for, such inclusion. Methods: A scoping study of current Australian undergraduate health care curricula, using an email survey of deans (or equivalent) of health faculties was designed utilising all Australian undergraduate courses that prepare medicine, nursing and allied health professionals for entry to practice. Participants were deans or faculty heads from health and related faculties which offered courses relevant to the project, identified from the Australian Government Department of Education, Science and Training website. Sixty-two deans (or equivalent) from 41 Australian universities were surveyed. A total of 42 completed surveys were returned (68% of deans). Main outcome measures were total hours, content, teaching and learning strategies and resources for palliative care education in undergraduate curricula; perceived gaps, barriers, and opportunities to support the inclusion of palliative care education in undergraduate curricula. Results: Forty-five percent of respondents reported the content of current curricula reflected the palliative approach to a large degree. More than half of the respondents reported that their course had palliative care components integrated to a minor degree and a further third to a moderate degree. The number of hours dedicated to palliative care and teaching and learning strategies varied across all respondents, although there was a high degree of commonality in content areas taught. Conclusion: Current Australian undergraduate courses vary widely in the nature and extent to which they provide education in palliative care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is now widely recognised that the creative industries constitute an important and growing global economic sector (Cunningham, 2007). Career development programs for the creative industries sector are an international priority (Guile, 2007) which faces several key challenges. These challenges relate to the unique nature of the creative industries. In the creative industries it is thus of critical importance that tertiary work-integrated learning programs focus on more than just training students to become employees: they must also focus on developing the experience and employability of students who will undertake non-conventional career paths. One challenge for work-integrated learning programs in the creative industries is that there is little professional tradition of internships; many employers are not experienced in work-integrated learning participation, and many academics are not familiar with work-integrated learning. This paper reports on the results of an evaluative research program undertaken one year after the launch of the Queensland University of Technology’s (Brisbane, Australia) Creative Industries Transitions to New Professional Environments work-integrated learning program, focusing particularly on key themes and issues identified in interviews with the program’s industry partners and academic staff.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterprise Systems (ES) have emerged as possibly the most important and challenging development in the corporate use of information technology in the last decade. Organizations have invested heavily in these large, integrated application software suites expecting improvments in; business processes, management of expenditure, customer service, and more generally, competitiveness, improved access to better information/knowledge (i.e., business intelligence and analytics). Forrester survey data consistently shows that investment in ES and enterprise applications in general remains the top IT spending priority, with the ES market estimated at $38 billion and predicted to grow at a steady rate of 6.9%, reaching $50 billion by 2012 (Wang & Hamerman, 2008). Yet, organizations have failed to realize all the anticipated benefits. One of the key reasons is the inability of employees to properly utilize the capabilities of the enterprise systems to complete the work and extract information critical to decision making. In response, universities (tertiary institutes) have developed academic programs aimed at addressing the skill gaps. In parallel with the proliferation of ES, there has been growing recognition of the importance of Teaching Enterprise Systems at tertiary education institutes. Many academic papers have discused the important role of Enterprise System curricula at tertiary education institutes (Ask, 2008; Hawking, 2004; Stewart, 2001), where the teaching philosophises, teaching approaches and challenges in Enterprise Systems education were discussed. Following the global trends, tertiary institutes in the Pacific-Asian region commenced introducing Enterprise System curricula in late 1990s with a range of subjects (a subject represents a single unit, rather than a collection of units; which we refer to as a course) in faculties / schools / departments of Information Technology, Business and in some cases in Engineering. Many tertiary educations commenced their initial subject offers around four salient concepts of Enterprise Systems: (1) Enterprise Systems implementations, (2) Introductions to core modules of Enterprise Systems, (3) Application customization using a programming language (e.g. ABAP) and (4) Systems Administration. While universities have come a long way in developing curricula in the enterprise system area, many obstacles remain: high cost of technology, qualified faculty to teach, lack of teaching materials, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targeting students’ learning is at the centre of education. In addition, education is promoted as a solution on various issues; consequently educators seek ways for teachers to address societal needs, students’ learning needs, and the overcrowded curriculum. There are definition debates and issues around integrating curricula. However, the rationale for primary students undertaking curricula integrated learning can provide motivation for primary teachers to devise and implement curricula integrated lessons in the classroom. More exploration is required to present models for the practical implementation of curricula integration. This paper provides practical ideas for curricula integration that focus on combining achievement standards from the Australian Curriculum: Science and other key learning areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the Hearts and Minds Project: A curriculum intervention (2005-2010) was to determine the effectiveness of curriculum interventions relating to breastfeeding introduced into a four year dietetic course based at Queensland University of Technology (QUT), Queensland, Australia. This five year project included interventions based on a needs assessment in 2005 that identified deficits in breastfeeding knowledge of students, concerns regarding their attitudes and beliefs, and little interest in working in an area that involves breastfeeding in the future. The interventions sought to address these issues and to equip students to support and promote breastfeeding in their role as health professionals in the future. The project was developed in partnership between QUT and the Nutrition Promotion Unit, Metro South Health Service District (Queensland Health) with support from the South East Queensland Breastfeeding Coalition.