985 resultados para Contemporary evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brackish water ecosystems are often exposed to wide variations in environmental variables, including temperature and salinity, which may cause strong selective pressures on organisms modifying the genetic patterns of species. The aim of this work was to test whether there is a ‘divergence-with-gene flow’ in coastal lagoon populations of white seabream (Diplodus sargus) (Ria Formosa, S Portugal and Mar Menor, SE Spain) respect to four marine populations, by using partial sequences of cyt b mitochondrial gene and information from nine microsatellite loci. Genetic diversity was highest in both coastal lagoons (Mar Menor and Ria Formosa) considering mitochondrial and nuclear markers. Although some of FST population pairwise comparisons were not significant, analyses of molecular variance (AMOVAs) detected differences between groups (coastal lagoon and marine) close to significance. Also, only two haplotypes (Cytb-17 and Cytb-18) were detected in both coastal lagoon sampling sites and these localities (Mar Menor and Ria Formosa) showed the highest number of singletons, some of them with a high number of mutations, as has been already described for other Mar Menor populations (Pomatochistus marmoratus and Holothuria polii). Also, several tests detected significant positive and balancing selection considering mtDNA and microsatellite data. These data support the hypothesis of selection as one of the drivers of the genetic differences found between coastal lagoon and marine populations. The life strategy adopted by Diplodus sargus in coastal lagoons allows it to decrease its mortality rate and improve the heritability of its genes. Also, the increase time spent in coastal lagoons with different temperatures and salinities favours the fitness selection and the maintenance of exclusive haplotypes and genotypes in coastal lagoon inhabitants favouring the ‘divergence-with-gene-flow’.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Evolution has been shown to be a critical determinant of ecological processes in some systems, but its importance relative to traditional ecological effects is not well known. In addition, almost nothing is known about the role of coevolution in shaping ecosystem function. Here, we experimentally evaluated the relative effects of species invasion (a traditional ecological effect), evolution and coevolution on ecosystem processes in Trinidadian streams. We manipulated the presence and population-of-origin of two common fish species, the guppy (Poecilia reticulata) and the killifish (Rivulus hartii). We measured epilithic algal biomass and accrual, aquatic invertebrate biomass, and detrital decomposition. Our results show that, for some ecosystem responses, the effects of evolution and coevolution were larger than the effects of species invasion. Guppy evolution in response to alternative predation regimes significantly influenced algal biomass and accrual rates. Guppies from a high-predation site caused an increase in algae relative to guppies from a low-predation site; algae effects were probably shaped by observed divergence in rates of nutrient excretion and algae consumption. Rivulus-guppy coevolution significantly influenced the biomass of aquatic invertebrates. Locally coevolved populations reduced invertebrate biomass relative to non-coevolved populations. These results challenge the general assumption that intraspecific diversity is a less critical determinant of ecosystem function than is interspecific diversity. Given existing evidence for contemporary evolution in these fish species, our findings suggest considerable potential for eco-evolutionary feedbacks to operate as populations adapt to natural or anthropogenic perturbations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cultural evolution has long been among the themes of anthropology but it has never ranked high. It is left mainly to archaeologists because they have to make sense of how society works and survives through time–a concern that has pretty much been abandoned by many cultural anthropologists. Anthropologists today seem little motivated to find out how society works, but rather to make the world a better place to live in for a particular population. The challenges of atmospheric change, nuclear proliferation, environmental degradation and resource exhaustion, the emergence of life threatening species–these challenges of contemporary evolution have awakened less interest in anthropology. The concern with cultural evolution seems to be of greater interest to non-anthropologists, such as in the work of Jarrod Diamond (2005), a biologist, and the genre that as emerged as Big History, with the works of David Christian (2005) and others. Among the few contemporary anthropologists who have sought the dynamics of cultural evolution, the work of Joseph Tainter (1996) stands out.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is widely observed that the global geography of innovation is rapidly evolving. This paper presents evidence concerning the contemporary evolution of the globe's most productive regions. The paper uncovers the underlying structure and co-evolution of knowledge-based resources, capabilities and outputs across these regions. The analysis identifies two key trends by which the economic evolution and growth patterns of these regions are differentiated-namely, knowledge-based growth and labour market growth. The knowledge-based growth factor represents the underlying commonality found between the growth of economic output, earnings and a range of knowledge-based resources. The labour market growth factor represents the capability of regions to draw on their human capital. Overall, spectacular knowledge-based growth of leading Chinese regions is evident, highlighting a continued shift of knowledge-based resources to Asia. It is concluded that regional growth in knowledge production investment and the capacity to draw on regional human capital reserves are neither necessarily traded-off nor complementary to each other. © 2012 Urban Studies Journal Limited.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ocean acidification, the drop in seawater pH associated with the ongoing enrichment of marine waters with carbon dioxide from fossil fuel burning, may seriously impair marine calcifying organisms. Our present understanding of the sensitivity of marine life to ocean acidification is based primarily on short-term experiments, in which organisms are exposed to increased concentrations of CO2. However, phytoplankton species with short generation times, in particular, may be able to respond to environmental alterations through adaptive evolution. Here, we examine the ability of the world's single most important calcifying organism, the coccolithophore Emiliania huxleyi, to evolve in response to ocean acidification in two 500-generation selection experiments. Specifically, we exposed E. huxleyi populations founded by single or multiple clones to increased concentrations of CO2. Around 500 asexual generations later we assessed their fitness. Compared with populations kept at ambient CO2 partial pressure, those selected at increased partial pressure exhibited higher growth rates, in both the single- and multiclone experiment, when tested under ocean acidification conditions. Calcification was partly restored: rates were lower under increased CO2 conditions in all cultures, but were up to 50% higher in adapted compared with non-adapted cultures. We suggest that contemporary evolution could help to maintain the functionality of microbial processes at the base of marine food webs in the face of global change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interactions between natural selection and environmental change are well recognized and sit at the core of ecology and evolutionary biology. Reciprocal interactions between ecology and evolution, eco-evolutionary feedbacks, are less well studied, even though they may be critical for understanding the evolution of biological diversity, the structure of communities and the function of ecosystems. Eco-evolutionary feedbacks require that populations alter their environment (niche construction) and that those changes in the environment feed back to influence the subsequent evolution of the population. There is strong evidence that organisms influence their environment through predation, nutrient excretion and habitat modification, and that populations evolve in response to changes in their environment at time-scales congruent with ecological change (contemporary evolution). Here, we outline how the niche construction and contemporary evolution interact to alter the direction of evolution and the structure and function of communities and ecosystems. We then present five empirical systems that highlight important characteristics of eco-evolutionary feedbacks: rotifer-algae chemostats; alewife-zooplankton interactions in lakes; guppy life-history evolution and nutrient cycling in streams; avian seed predators and plants; and tree leaf chemistry and soil processes. The alewife-zooplankton system provides the most complete evidence for eco-evolutionary feedbacks, but other systems highlight the potential for eco-evolutionary feedbacks in a wide variety of natural systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evolutionary biologists have long endeavored to document how many species exist on Earth, to understand the processes by which biodiversity waxes and wanes, to document and interpret spatial patterns of biodiversity, and to infer evolutionary relationships. Despite the great potential of this knowledge to improve biodiversity science, conservation, and policy, evolutionary biologists have generally devoted limited attention to these broader implications. Likewise, many workers in biodiversity science have underappreciated the fundamental relevance of evolutionary biology. The aim of this article is to summarize and illustrate some ways in which evolutionary biology is directly relevant We do so in the context of four broad areas: (1) discovering and documenting biodiversity, (2) understanding the causes of diversification, (3) evaluating evolutionary responses to human disturbances, and (4) implications for ecological communities, ecosystems, and humans We also introduce bioGENESIS, a new project within DIVERSITAS launched to explore the potential practical contributions of evolutionary biology In addition to fostering the integration of evolutionary thinking into biodiversity science, bioGENESIS provides practical recommendations to policy makers for incorporating evolutionary perspectives into biodiversity agendas and conservation. We solicit your involvement in developing innovative ways of using evolutionary biology to better comprehend and stem the loss of biodiversity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Letras - FCLAS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the main tendencies of leprosy worldwide is the simultaneous action of non governmental organizations and official agencies operating eventual different strategies. This paper aims to contribute to such question focusing on some outstanding aspects of respective contemporary evolution. METHODS Application of bibliographic review and contents analysis techniques to primary data from a circumstancial set of open circulation specific publications. RESULTS Successive disagreements registered between both parts refer to the objective to be attained by the fight against the disease, if control or elimination. CONCLUSIONS New perspectives of jointed actions are being searched for now when priority on endemics control is more realistically assumed and social determination is been really considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transgenerational plasticity (TGP), a type of maternal effect, occurs when the environment experienced by one or both the parents prior to fertilization directly translates, without changing DNA sequences, into changes in offspring reaction norms. Evidence of such effects has been found in several traits throughout many phyla, and, although of great potential importance - especially in a time of rapid climate change - TGP in thermal growth physiology had never been demonstrated for vertebrates until the first experiment on thermal TGP in sheepshead minnows, who, given sufficient time, adaptively program their offspring for maximal egg viability and growth at the temperature experienced before fertilization. This study on sheepshead minnows from South Carolina and Connecticut investigates how population, parent temperature, and offspring temperature affect egg production, size, viability, larval survival and growth rates, whether these effects provide evidence of TGP, and whether and how they vary with length of exposure time (5, 12, 19, 26, 33 and 43 days) of the parents to the new experimental temperatures of either 26°C or 32°C. Several results are consistent with those obtained in the previous TGP study, which outline a sequence of events consisting of an initial adjustment period to the new temperatures, in which egg production decreases and no signs of TGP are present, followed by a shift to TGP (towards 26-33 days of exposure) in which parents start to produce more eggs which are better adapted to the new thermal environment. Other results present new information, such as signs of TGP in the parent temperature effect on egg sizes already around 20 days of exposure. The innovative idea of populations being able to adapt to rapidly shifting environments through non-genetic mechanisms such as TGP opens new possibilities of survival of species and will have important implications on ecology, physiology, and contemporary evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Policy issues which receive large inputs of scientific and technical information are frequently marred by acrimonious controversies between contributing experts. There are few if any examples of a public policy decision being based on a firm consensus of scientific and technical experts. Such a consensus is taken for granted by the `Rational' model of decision making and its derivatives. Comparing the dynamics of conflict in policy-relevant issues with those of conflict in `pure' science, one is struck by their great similarity. In both cases we witness examples of rhetorical statements about incompetence, conflicting interpretations of data, and interdisciplinary communication problems. Noting this similarity, this thesis attempts to answer the question, `Is there a similarity of cause: do the same causes lie at the roots of conflict in policy-relevant and policy-irrelevant science?' In answering this question this thesis examines recent controversies in a generally policy-irrelevant science - evolutionary biology. Three episodes of conflict are studied: the `Neutral Allele Theory', `Punctuated Equilibrium', and `Structuralist versus Functionalist approaches to evolution'. These controversies are analysed in terms of both Kuhn's account of scientific `crises' and Collingridge and Reeve's (1986) `Overcritical Model'. Comparing its findings with those of Collingridge and Reeve, this thesis concludes that, (a) there is a Kuhnian crisis in contemporary evolution theory and, (b) that common causes do lie at the roots of conflict in policy-relevant and policy-irrelevant science. Science has an inherent tendency to degenerate into acrimonious conflict but at the same time has mechanisms which eventually resolve such conflicts. Unfortunately, when science is incorporated into the policy arena these mechanisms are prevented from operating. This thesis reinforces Collingridge and Reeve's conclusion that science is of little use to policy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In any organization, risk plays a huge role in the success or failure of any business endeavour. Measuring and managing risk is a difficult and often complicated task and the global financial crisis of the late noughties can be traced to a worldwide deficiency in risk management regimes. One of the problems in understanding how best to manage risk is a lack of detailed examples of real world practice. In this accessible textbook the author sets the world of risk management in the context of the broader corporate governance agenda, as well as explaining the core elements of a risk management system. Material on the differences between risk management and internal auditing is supplemented by a section on the professionalization of risk – a relatively contemporary evolution. Enterprise risk management is also fully covered. With a detailed array of risk management cases – including Tesco, RBS and the UK government – lecturers will find this a uniquely well researched resource, supplemented by materials that enable the cases to be easily integrated into the classroom. Risk managers will be delighted with the case materials made available for the first time with the publication of this book.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recent focus on contemporary evolution and the connections between communities has sought to more closely integrate the fields of ecology and evolutionary biology. Studies of coevolutionary dynamics, life history evolution, and rapid local adaptation demonstrate that ecological circumstances can dictate evolutionary trajectories. Thus, variation in species identity, trait distributions, and genetic composition may be maintained among ecologically divergent habitats. New theories and hypotheses (e.g., metacommunity theory and the Monopolization hypothesis) have been developed to understand better the processes occurring in spatially structured environments and how the movement of individuals among habitats contributes to ecology and evolution at broader scales. As few empirical studies of these theories exist, this work seeks to further test these concepts. Spatial and temporal dispersal are the mechanisms that connect habitats to one another. Both processes allow organisms to leave conditions that are suboptimal or unfavorable, and enable colonization and invasion, species range expansion, and gene flow among populations. Freshwater zooplankton are aquatic crustaceans that typically develop resting stages as part of their life cycle. Their dormant propagules allow organisms to disperse both temporally and among habitats. Additionally, because a number of species are cyclically parthenogenetic, they make excellent model organisms for studying evolutionary questions in a controlled environment. Here, I use freshwater zooplankton communities as model systems to explore the mechanisms and consequences of dispersal and to test these nascent theories on the influence of spatial structure in natural systems. In Chapter one, I use field experiments and mathematical models to determine the range of adult zooplankton dispersal over land and what vectors are moving zooplankton. Chapter two focuses on prolonged dormancy of one aquatic zooplankter, Daphnia pulex. Using statistical models with field and mesocosm experiments, I show that variation in Daphnia dormant egg hatching is substantial among populations in nature, and some of that variation can be attributed to genetic differences among the populations. Chapters three and four explore the consequences of dispersal at multiple levels of biological organization. Chapter three seeks to understand the population level consequences of dispersal over evolutionary time on current patterns of population genetic differentiation. Nearby populations of D. pulex often exhibit high population genetic differentiation characteristic of very low dispersal. I explore two alternative hypotheses that seek to explain this pattern. Finally, chapter four is a case study of how dispersal has influenced patterns of variation at the community, trait and genetic levels of biodiversity in a lake metacommunity.