973 resultados para Colonization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isogenic mutants of Salmonella enteritidis defective for the elaboration of fimbrial types SEF14, SEF17, SEF21 and flagella were used to study the contribution these organelles made to colonization, invasion and lateral transfer in young chicks. The caecum, liver and spleen were colonized within 24 h following oral inoculation of 1-day-old chicks with 10(5) wild-type S. enteritidis strain LA5. However, for some mutants, the numbers of organisms recovered from internal organs was reduced significantly, particularly at 24 h post-inoculum, which supported the hypothesis that the organelles contribute to invasion and dissemination to internal organs. Specifically, mutations affecting SEF17, SEF21 and flagella contributed to a delay in colonization of the spleen, and those affecting SEF21 and flagella delayed colonization of the liver. Lower numbers of bacteria were recovered from the caecum with mutants deficient in elaboration of SEF21. Sentinel birds were colonized by LA5 or EAV40 (14(-), 17(-), 21(-), fla(-)) directly from the environment within 2 days, although a consistent slight delay was observed with the multiple mutant. Overall, our data suggest a collective role for SEF17, SEF21 and flagella, but not SEF14, in the early stages of colonization and invasion of young chicks by S. enteritidis, but these surface appendages appear unnecessary for colonization of birds from their immediate environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the role of flagella and fimbriae of Escherichia coli O78:K80 in avian colibacillosis, day-old chicks were dosed orally with defined afimbriate and or aflagellate mutants and colonization, invasion and persistence compared with that of the wild-type. In an invasion model, chicks were dosed with 1 x 10(5) c.f.u. of a single strain and mutants defective for type 1 fimbriae, curli fimbriae or flagella colonized livers by 24 h although the numbers of bacteria present were significantly less than the wild-type, Mutants colonized between 50 and 75 % of spleens whereas the wild-type colonized 100 % of spleens. Additionally, the numbers of mutant bacteria in colonized spleens were significantly less than the wild-type. Surprisingly, mutants defective for the elaboration of more than one appendage were no more attenuated than single mutants. In a persistence model, chicks were dosed with 1 x 10(2) c.f.u. of a single strain and mutants defective for type 1 or curli or flagella or any combination thereof persisted as assessed by cloacal swabbing for 5 weeks of the experiment less well than the wild-type. In an additional persistence model, chicks were dosed with 5 x 10(2) c.f.u. of each of wild-type and one mutant together. All mutants were significantly less persistent than the wild-type (P < 0.001) and one mutant which lacked type 1, curli and flagella, was eliminated within 2 weeks. Analysis of the trends of elimination indicated that flagella contributed to persistence more than curli, which contributed more than type 1 fimbriae. Here was evidence for a major role in colonization, invasion and persistence played by type 1, curli and flagella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterohemorrhagic Escherichia coli (EHEC) strains comprise a broad group of bacteria, some of which cause attaching and effacing (AE) lesions and enteritis in humans and animals. Non-O157:H7 EHEC strains contain the gene efa-1 (referred to in previous publications as efa1), which influences adherence to cultured epithelial cells. An almost identical gene in enteropathogenic E. coli (lifA) mediates the inhibition of lymphocyte proliferation and proinflammatory cytokine synthesis. We have shown previously that significantly lower numbers of EHEC 05 and 0111 efa-1 mutants are shed in feces following experimental infection in calves and that these mutants exhibit reduced adherence to intestinal epithelia compared with isogenic wild-type strains. E. coli O157:H7 strains lack efa-1 but encode a homolog on the pO157 plasmid (toxB/l7095) and contain a truncated version of the efa-1 gene (efa-1'/z4332 in O island 122 of the EDL933 chromosome). Here we report that E. coli O157:H7 toxB and efa-1' single and double mutants exhibit reduced adherence to cultured epithelial cells and show reduced expression and secretion of proteins encoded by the locus of enterocyte effacement (LEE), which plays a key role in the host-cell interactions of EHEC. The activity of LEE1, LEE4, and LEE5 promoters was not significantly altered in E. coli O157:H7 strains harboring toxB or efa-1' mutations, indicating that the effect on the expression of LEE-encoded secreted proteins occurs at a posttranscriptional level. Despite affecting type III secretion, mutation of toxB and efa-1' did not significantly affect the course of fecal shedding of E. coli O157:H7 following experimental inoculation of 10- to 14-day-old calves or 6-week-old sheep. Mutation of tir caused a significant reduction in fecal shedding of E. coli O157:H7 in calves, indicating that the formation of AE lesions is important for colonization of the bovine intestine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterohaemorrhagic Escherichia coli O157 : H7 infections of man have been associated with consumption of unpasteurized goat's milk and direct contact with kid goats on petting farms, yet little is known about colonization of goats with this organism. To assess the contribution of flagella and intimin of E coli O157 : H7 in colonization of the goat, 8-week-old conventionally reared goats were inoculated orally in separate experiments with 1 X 10(10) c.f.u. of a non-verotoxigenic strain of E coli O157: H7 (strain NCTC 12900 Nal(r)), an aflagellate derivative (DMB1) and an intimin-deficient derivative (DMB2). At 24 In after inoculation, the three E coli O157 : H7 strains were shed at approximately 5 X 1 04 c.f.u. (g faeces)(-1) from all animals. Significantly fewer intimin-deficient bacteria were shed only on days 2 (P = 0(.)003) and 4 (P = 0(.)014), whereas from day 7 to 29 there were no differences. Tissues from three animals inoculated with wild-type E coli O157 : H7 strain NCTC 12900 Nalr were sampled at 24,48 and 96 In after inoculation and the organism was cultured from the large intestine of all three animals and from the duodenum and ileum of the animal examined at 96 h. Tissues were examined histologically but attaching-effacing (AE) lesions were not observed at any intestinal site of the animals examined at 24 or 48 In. However, the animal examined at 96 h, which had uniquely shed approximately 1 x 10(7) E coli O157: H7 (g faeces)(-1) for the preceding 3 days, showed a heavy, diffuse infection with cryptosporidia. and abundant, multifocal AE lesions in the distal colon, rectum and at the recto-anal junction. These AE lesions were confirmed by immunohistochemistry to be associated with E coli O157: H7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli O157: H7 and Cryptosporidium parvum infections of man have been associated with direct contact with small ruminants. Colostrum protects neonates against gastrointestinal pathogens, and orphan lambs, which are common on petting farms, may be deprived of this protection. In a recent study, it was demonstrated that high shedding of E coli O157 : H7 by an 8-week-old goat kid was associated with coincidental C. parvum infection. Furthermore, both pathogens were co-located in the distal gastrointestinal tract. It was hypothesized that colostrum deprivation and pre-infection with C. parvum predisposed young ruminants to colonization and increased shedding of E coli O157: H7. To test this, 21 lambs 5 weeks of age were divided into four groups as follows: (A) colostrum-deprived and inoculated with E coli O157: H7, (B) colostrum-deprived and inoculated with C. parvum and then E coli O157: H7, (C) conventionally reared and inoculated with E coli O157: H7, (D) conventionally reared and inoculated with C. parvum and then E coli O15 7: H7. C. parvum was detected between 8 and 12 days post-inoculation in most of the infected lambs. At 24 h post-inoculation with E coli O157: H7, all lambs were shedding between 5 x 10(4) and 5 x 10(7) c.f.u. E coli O157: H7 per gram of faeces. E coli O157: H7 was shed in higher numbers in the groups pre-inoculated with C. parvum, whether conventionally reared or colostrum-deprived. Interestingly, for the colostrum-deprived lambs on day 3, a significant difference in shedding of E coli O157: H7 was observed (P= 0-038), with the lambs inoculated with E coli alone yielding higher counts than those pre-inoculated with C. parvum. From day 15 onwards, shedding of E coli O157: H7 was highest from the colostrum-deprived C. parvum-infected lambs, then (in descending order of shedding) the colostrum-deprived lambs, the conventionally reared lambs infected with C. parvum, and the conventionally reared animals. In total, four animals were euthanized, two at 24 h and two at 96 h post inoculation with E coli 0 157: H7 (two conventionally reared and two colostrum-deprived). All animals euthanized were from groups pre-inoculated with C. parvum prior to challenge with E coli O157 : H7. On examination of tissues, in three of the four animals examined, multifocal attaching and effacing lesions were observed in the caecum, colon, rectum and at the recto-anal junction, and were confirmed by immunolhistochemistry to be associated with E coli O157: H7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intimin facilitates intestinal colonization by enterohemorrhagic Escherichia coli O157:H7; however, the importance of intimin binding to its translocated receptor (Tir) as opposed to cellular coreceptors is unknown. The intimin-Tir interaction is needed for optimal actin assembly under adherent bacteria in vitro, a process which requires the Tir-cytoskeleton coupling protein (TccP/EspF(U)) in E. coli O157:H7. Here we report that E. coli O157:H7 tir mutants are at least as attenuated as isogenic eae mutants in calves and lambs, implying that the role of intimin in the colonization of reservoir hosts can be explained largely by its binding to Tir. Mutation of tccP uncoupled actin assembly from the intimin-Tir-mediated adherence of E. coli O157:H7 in vitro but did not impair intestinal colonization in calves and lambs, implying that pedestal formation may not be necessary for persistence. However, an E. coli O157:H7 tccP mutant induced typical attaching and effacing lesions in a bovine ligated ileal loop model of infection, suggesting that TccP-independent mechanisms of actin assembly may operate in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli O26 is recognized as an emerging pathogen associated with disease in both ruminants and humans. Compared to those of E. coli O157:117, the shedding pattern and location of E. coli O26 in the gastrointestinal tract (GIT) of ruminants are poorly understood. In the studies reported here, an stx-negative E. coli O26 strain of ovine origin was inoculated orally into 6-week-old lambs and the shedding pattern of the O26 strain was monitored by serial bacteriological examination of feces. The location of colonization in the GIT was examined at necropsy at two time points. The numbers of O26 organisms excreted in feces declined from approximately 10(7) to 10(4) CFU per gram of feces by day 7 and continued at this level for a further 3 weeks. Beyond day 30, excretion was from few animals, intermittent, and just above the detection limit. By day 38, all fecal samples were negative, but at necropsy, O26 organisms were recovered from the upper GIT, specifically the ileum. However, no attaching-effacing (AE) lesions were observed. To identify the location of E. coli O26 within the GIT early after inoculation, two lambs were examined postmortem, 4 days postinoculation. High numbers of O26 organisms were recovered from all GIT sites examined, and similar to 10(9) CFU were recovered from 1 gram of ileal tissue from one animal. Despite high numbers of O26 organisms, AE lesions were identified on the mucosa of the ascending colon of only one animal. These data indicate that E. coli O26 readily colonizes 6-week-old lambs, but the sparseness of AE lesions suggests that O26 is well adapted to this host, and mechanisms other than those dependent upon intimin may play a role in persistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of Escherichia coli O157:H7 to colonize the intestinal epithelia is dependent on the expression of intimin and other adhesins. The chromosome of E. coli O157:H7 carries two loci encoding long polar fimbriae (LPF). These fimbriae mediate adherence to epithelial cells and are associated with colonization of the intestine. In order to increase our knowledge about the conditions controlling their expression and their role in colonization of an animal model, the environmental cues that promote expression of lpf genes and the role of E. coli O157:H7 LPF in intestinal colonization of lambs were investigated. We found that expression of lpf1 was regulated in response to growth phase, osmolarity, and pH; that lpf2 transcription was stimulated during late exponential growth and iron depletion; and that LPF impacts the ability of E. coli O157:H7 to persist in the intestine of infected 6-week-old lambs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximising the ability of piglets to survive exposure to pathogens is essential to reduce early piglet mortality, an important factor in efficient commercial pig production. Mortality rates can be influenced by many factors, including early colonization by microbial commensals. Here we describe the development of an intestinal microbiota, the Bristol microbiota, for use in gnotobiotic pigs and its influence on synthesis of systemic immunoglobulins. Such a microbiota will be of value in studies of the consequences of early microbial colonization on development of the intestinal immune system and subsequent susceptibility to disease. Gnotobiotic pig studies lack a well-established intestinal microbiota. The use of the Altered Schaedler Flora (ASF), a murine intestinal microbiota, to colonize the intestines of Caesarean-derived, gnotobiotic pigs prior to gut closure, resulted in unreliable colonization with most (but not all) strains of the ASF. Subsequently, a novel, simpler porcine microbiota was developed. The novel microbiota reliably colonized the length of the intestinal tract when administered to gnotobiotic piglets. No health problems were observed, and the novel microbiota induced a systemic increase in serum immunoglobulins, in particular IgA and IgM. The Bristol microbiota will be of value for highly controlled, reproducible experiments of the consequences of early microbial colonization on susceptibility to disease in neonatal piglets, and as a biomedical model for the impact of microbial colonization on development of the intestinal mucosa and immune system in neonates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Acquisition of the intestinal microbiota in early life corresponds with the development of the mucosal immune system. Recent work on caesarean-delivered infants revealed that early microbial composition is influenced by birthing method and environment. Furthermore, we have confirmed that early-life environment strongly influences both the adult gut microbiota and development of the gut immune system. Here, we address the impact of limiting microbial exposure after initial colonization on the development of adult gut immunity. Methodology/Principal Findings: Piglets were born in indoor or outdoor rearing units, allowing natural colonization in the immediate period after birth, prior to transfer to high-health status isolators. Strikingly, gut closure and morphological development were strongly affected by isolator-rearing, independent of indoor or outdoor origins of piglets. Isolator-reared animals showed extensive vacuolation and disorganization of the gut epithelium, inferring that normal gut closure requires maturation factors present in maternal milk. Although morphological maturation and gut closure were delayed in isolatorreared animals, these hard-wired events occurred later in development. Type I IFN, IL-22, IL-23 and Th17 pathways were increased in indoor-isolator compared to outdoor-isolator animals during early life, indicating greater immune activation in pigs originating from indoor environments reflecting differences in the early microbiota. This difference was less apparent later in development due to enhanced immune activation and convergence of the microbiota in all isolator-reared animals. This correlated with elevation of Type I IFN pathways in both groups, although T cell pathways were still more affected in indoor-reared animals. Conclusions/Significance: Environmental factors, in particular microbial exposure, influence expression of a large number of immune-related genes. However, the homeostatic effects of microbial colonization in outdoor environments require sustained microbial exposure throughout development. Gut development in high-hygiene environments negatively impacts on normal succession of the gut microbiota and promotes innate immune activation which may impair immune homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study represents the first detailed multi-proxy palaeoenvironmental investigation associated with a Late Iron Age lake-dwelling site in the eastern Baltic. The main objective was to reconstruct the environmental and vegetation dynamics associated with the establishment of the lake-dwelling and land-use during the last 2,000 years. A lacustrine sediment core located adjacent to a Late Iron Age lake-dwelling, medieval castle and Post-medieval manor was sampled in Lake Āraiši. The core was dated using spheroidal fly-ash particles and radiocarbon dating, and analysed in terms of pollen, non-pollen palynomorphs, diatoms, loss-on-ignition, magnetic susceptibility and element geochemistry. Associations between pollen and other proxies were statistically tested. During ad 1–700, the vicinity of Lake Āraiši was covered by forests and human activities were only small-scale with the first appearance of cereal pollen (Triticum and Secale cereale) after ad 400. The most significant changes in vegetation and environment occurred with the establishment of the lake-dwelling around ad 780 when the immediate surroundings of the lake were cleared for agriculture, and within the lake there were increased nutrient levels. The highest accumulation rates of coprophilous fungi coincide with the occupation of the lake-dwelling from ad 780–1050, indicating that parts of the dwelling functioned as byres for livestock. The conquest of tribal lands during the crusades resulted in changes to the ownership, administration and organisation of the land, but our results indicate that the form and type of agriculture and land-use continued much as it had during the preceding Late Iron Age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slavic and German colonization of the southern Baltic between the 8th and 15th centuries A.D. is well-documented archaeologically and historically. Despite the large number of pollen profiles from Poland, few palaeoecological studies have examined the ecological impact of a process that was central to the expansion of European, Christian, societies. This study aims to redress this balance through multiproxy analysis of lake sediments from Radzyń Chełminski, Northern Poland, using pollen, element geochemistry (Inductively Coupled-Optical Emission Spectroscopy [ICP-OES]), organic content, and magnetic susceptibility. The close association between lake and medieval settlements presents the ideal opportunity to reconstruct past vegetation and land-use dynamics within a well-documented archaeological, historical, and cultural context. Three broad phases of increasing landscape impact are visible in the pollen and geochemical data dating from the 8th/9th, 10th/11th, and 13th centuries, reflecting successive phases of Slavic and German colonization. This involved the progressive clearance of oak-hornbeam dominated woodland and the development of an increasingly open agricultural landscape. Although the castles and towns of the Teutonic Order remain the most visible signs of medieval colonization, the palynological and geochemical data demonstrate that the major phase of woodland impact occurred during the preceding phase of Slavic expansion; Germans colonists were entering a landscape already significantly altered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant roots by mycorrhizal fungi. Here we quantify the global patterns of these relationships. Location Global. Methods Data on plant root colonization intensities by the two dominant types of mycorrhizal fungi world-wide, arbuscular (4887 plant species in 233 sites) and ectomycorrhizal fungi (125 plant species in 92 sites), were compiled from published studies. Data for climatic and soil factors were extracted from global datasets. For a given mycorrhizal type, we calculated at each site the mean root colonization intensity by mycorrhizal fungi across all potentially mycorrhizal plant species found at the site, and subjected these data to generalized additive model regression analysis with environmental factors as predictor variables. Results We show for the first time that at the global scale the intensity of plant root colonization by arbuscular mycorrhizal fungi strongly relates to warm-season temperature, frost periods and soil carbon-to-nitrogen ratio, and is highest at sites featuring continental climates with mild summers and a high availability of soil nitrogen. In contrast, the intensity of ectomycorrhizal infection in plant roots is related to soil acidity, soil carbon-to-nitrogen ratio and seasonality of precipitation, and is highest at sites with acidic soils and relatively constant precipitation levels. Main conclusions We provide the first quantitative global maps of intensity of mycorrhizal colonization based on environmental drivers, and suggest that environmental changes will affect distinct types of mycorrhizae differently. Future analyses of the potential effects of environmental change on global carbon and nutrient cycling via mycorrhizal pathways will need to take into account the relationships discovered in this study.