1000 resultados para Cmy-2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Escherichia coli isolate producing the CMY-2 β-lactamase was found in the milk of a cow with recurrent subclinical mastitis. The isolate was resistant to the antibiotics commonly used for intramammary mastitis treatment, such as penicillins, cephalosporins, β-lactam/β-lactamase inhibitor combinations, aminoglycosides, tetracyclines, and sulfonamides. This is the first report of a plasmid-mediated AmpC-producing Enterobacteriaceae in bovine milk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cefepime is frequently prescribed to treat infections caused by AmpC-producing Gram-negative bacteria. CMY-2 is the most common plasmid-mediated AmpC (pAmpC) β-lactamase. Unfortunately, CMY variants conferring enhanced cefepime resistance are reported. Here, we describe the evolution of CMY-2 to an extended-spectrum AmpC (ESAC) in clonally identical E. coli isolates obtained from a patient. The CMY-2-producing E. coli (CMY-2-Ec) was isolated from a wound. Thirty days later, one CMY-33-producing E. coli (CMY-33-Ec) was detected in bronchoalveolar lavage. Two weeks before the isolation of CMY-33-Ec, the patient received cefepime.CMY-33-Ec and CMY-2-Ec were identical by rep-PCR, being of hyperepidemic ST131, but showed different β-lactam MICs (e.g., cefepime 16 vs. ≤0.5 μg/ml). Identical CMY-2-Ec isolates were also found in a rectal swab. CMY-33 differs from CMY-2 by a Leu293-Ala294 deletion. Expressed in E. coli DH10B, both CMYs conferred resistance to ceftazidime (≥256 μg/ml), but cefepime MICs were higher for CMY-33 than CMY-2 (8 vs. 0.25 μg/ml). The kcat/Km or kinact/KI (μM(-1) s(-1)) indicated that CMY-33 possesses an ESBL-like spectrum compared to CMY-2 (cefoxitin: 0.2 vs. 0.4; ceftazidime: 0.2 vs. not measurable; cefepime: 0.2 vs. not measurable; tazobactam 0.0018 vs. 0.0009). Using molecular modeling, we show that a widened active site (∼4 Å shift) may play a significant role in enhancing cefepime hydrolysis. This is the first in vivo demonstration of a pAmpC that under cephalosporin treatment expands its substrate spectrum resembling an ESBL. The prevalence of CMY-2-Ec isolates is rapidly increasing worldwide, therefore awareness that cefepime treatment may select for resistant isolates is critical.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: To determine clonality and identify plasmid-mediated resistance genes in 11 multidrug-resistant Escherichia coli (MDREC) isolates associated with opportunistic infections in hospitalized dogs in Australia. Methods: Phenotypic (MIC determinations, modified double-disc diffusion and isoelectric focusing) and genotypic methods (PFGE, plasmid analysis, PCR, sequencing, Southern hybridization, bacterial conjugation and transformation) were used to characterize, investigate the genetic relatedness of, and identify selected plasmid-mediated antimicrobial resistance genes, in the canine MDREC. Results: Canine MDRECs were divided into two clonal groups (CG 1 and 2) with distinct restriction endonuclease digestion and plasmid profiles. All isolates possessed bla(CMY-7) on an similar to 93 kb plasmid. In CG 1 isolates, bla(TEM), catA1 and class 1 integron-associated dfrA17-aadA5 genes were located on an similar to 170 kb plasmid. In CG 2 isolates, a second similar to 93 kb plasmid contained bla(TEM) and unidentified class 1 integron genes, although a single CG 2 strain carried dfrA5. Antimicrobial susceptibility profiling of E. coli K12 transformed with CG 2 large plasmids confirmed that the bla(CMY-7)-carrying plasmid did not carry any other antimicrobial resistance genes, whereas the bla(TEM)/class 1 integron-carrying plasmid carried genes conferring resistance to tetracycline and streptomycin also. Conclusions: This is the first report on the detection of plasmid-mediated bla(CMY-7) in animal isolates in Australia. MDREC isolated from extraintestinal infections in dogs may be an important reservoir of plasmid-mediated resistance genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The herd prevalence of third-generation cephalosporin-resistant Escherichia coli (3GC-R-Ec) was determined for broilers (25.0% [95% confidence interval (CI) 17.6-33.7%]), pigs (3.3% [(95% CI 0.4-11.5%]), and cattle (3.9% [95% CI 0.5-13.5%]), using a sampling strategy that was representative of the livestock population slaughtered in Switzerland between October 2010 and April 2011. The 3GC-R-Ec isolates were characterized by the measurement of the MICs of various antibiotics, microarray analyses, analytical isoelectric focusing, polymerase chain reaction and DNA sequencing for bla genes, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing. CMY-2 (n = 12), CTX-M-1 (n = 11), SHV-12 (n = 5), TEM-52 (n = 3), CTX-M-15 (n = 2), and CTX-M-3 (n = 1) producers were found. The majority of CMY-2 producers fell into 1 PFGE cluster, which predominantly contained ST61, whereas the CTX-M types were carried by heterogeneous clones of E. coli, as shown by the numerous PFGE profiles and STs that were found. This is the first national Swiss study that focuses on the spread of 3GC-R Enterobacteriaceae among slaughtered animals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES Resistance to extended-spectrum cephalosporins (ESCs) in Escherichia coli can be due to the production of ESBLs, plasmid-mediated AmpCs (pAmpCs) or chromosomal AmpCs (cAmpCs). Information regarding type and prevalence of β-lactamases, clonal relations and plasmids associated with the bla genes for ESC-R E. coli (ESC-R-Ec) detected in Switzerland is lacking. Moreover, data focusing on patients referred to the specialized outpatient clinics (SOCs) are needed. METHODS We analysed 611 unique E. coli isolated during September-December 2011. ESC-R-Ec were studied with microarrays, PCR/DNA sequencing for blaESBLs, blapAmpCs, promoter region of blacAmpC, IS elements, plasmid incompatibility group, and also implementing transformation, aIEF, rep-PCR and MLST. RESULTS The highest resistance rates were observed in the SOCs, whereas those in the hospital and community were lower (e.g. quinolone resistance of 22.6%, 17.2% and 9.0%, respectively; P = 0.003 for SOCs versus community). The prevalence of ESC-R-Ec in the three settings was 5.3% (n = 11), 7.8% (n = 22) and 5.7% (n = 7), respectively. Thirty isolates produced CTX-M ESBLs (14 were CTX-M-15), 5 produced CMY-2 pAmpC and 5 hyper-expressed cAmpCs due to promoter mutations. Fourteen isolates were of sequence type 131 (ST131; 10 with CTX-M-15). blaCTX-M and blaCMY-2 were associated with an intact or truncated ISEcp1 and were mainly carried by IncF, IncFII and IncI1plasmids. CONCLUSIONS ST131 producing CTX-M-15 is the predominant clone. The prevalence of ESC-R-Ec (overall 6.5%) is low, but an unusual relatively high frequency of AmpC producers (25%) was noted. The presence of ESC-R-Ec in the SOCs and their potential ability to be exchanged between hospital and community should be taken into serious consideration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Escherichia coli, Salmonella spp. and Acinetobacter spp. are important human pathogens. Serious infections due to these organisms are usually treated with extended-spectrum cephalosporins (ESCs). However, in the past two decades we have faced a rapid increasing of infections and colonization caused by ESC-resistant (ESC-R) isolates due to production of extended-spectrum-β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs) and/or carbapenemase enzymes. This situation limits drastically our therapeutic armamentarium and puts under peril the human health. Animals are considered as potential reservoirs of multidrug-resistant (MDR) Gram-negative organisms. The massive and indiscriminate use of antibiotics in veterinary medicine has contributed to the selection of ESC-R E. coli, ESC-R Salmonella spp. and, to less extent, MDR Acinetobacter spp. among animals, food, and environment. This complex scenario is responsible for the expansion of these MDR organisms which may have life-threatening clinical significance. Nowadays, the prevalence of food-producing animals carrying ESC-R E. coli and ESC-R Salmonella (especially those producing CTX-M-type ESBLs and the CMY-2 pAmpC) has reached worryingly high values. More recently, the appearance of carbapenem-resistant isolates (i.e., VIM-1-producing Enterobacteriaceae and NDM-1 or OXA-23-producing Acinetobacter spp.) in livestock has even drawn greater concerns. In this review, we describe the aspects related to the spread of the above MDR organisms among pigs, cattle, and poultry, focusing on epidemiology, molecular mechanisms of resistance, impact of antibiotic use, and strategies to contain the overall problem. The link and the impact of ESC-R organisms of livestock origin for the human scenario are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Extended-spectrum beta-lactamases (ESBL) and AmpC beta-lactamases (AmpC) are of concern for veterinary and public health because of their ability to cause treatment failure due to antimicrobial resistance in Enterobacteriaceae. The main objective was to assess the relative contribution (RC) of different types of meat to the exposure of consumers to ESBL/AmpC and their potential importance for human infections in Denmark. MATERIAL AND METHODS The prevalence of each genotype of ESBL/AmpC-producing E. coli in imported and nationally produced broiler meat, pork and beef was weighted by the meat consumption patterns. Data originated from the Danish surveillance program for antibiotic use and antibiotic resistance (DANMAP) from 2009 to 2011. DANMAP also provided data about human ESBL/AmpC cases in 2011, which were used to assess a possible genotype overlap. Uncertainty about the occurrence of ESBL/AmpC-producing E. coli in meat was assessed by inspecting beta distributions given the available data of the genotypes in each type of meat. RESULTS AND DISCUSSION Broiler meat represented the largest part (83.8%) of the estimated ESBL/AmpC-contaminated pool of meat compared to pork (12.5%) and beef (3.7%). CMY-2 was the genotype with the highest RC to human exposure (58.3%). However, this genotype is rarely found in human infections in Denmark. CONCLUSION The overlap between ESBL/AmpC genotypes in meat and human E. coli infections was limited. This suggests that meat might constitute a less important source of ESBL/AmpC exposure to humans in Denmark than previously thought - maybe because the use of cephalosporins is restricted in cattle and banned in poultry and pigs. Nonetheless, more detailed surveillance data are required to determine the contribution of meat compared to other sources, such as travelling, pets, water resources, community and hospitals in the pursuit of a full source attribution model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective - To evaluate the association between maintaining joint hospital and maternity pens;and persistence of multi-drug-resistant (MDR) Salmonella enterica serovar Newport on 2 dairy farms. Design - Observational study. Sample Population - Feces and environmental samples from 2 dairy herds. Procedure - Herds were monitored for fecal shedding of S enterica Newport after outbreaks of clinical disease. Fecal and environmental samples were collected approximately monthly from pens housing sick cows and calving cows and from pens containing lactating cows. Cattle shedding the organism were tested serially on subsequent visits to determine carrier status. One farm was resampled after initiation of interventional procedures, including separation of hospital and maternity pens. Isolates were characterized via serotyping, determination of antimicrobial resistance phenotype, detection of the CMY-2 gene, and DNA fingerprinting. Results - The prevalence (32.4% and 33.3% on farms A and B, respectively) of isolating Salmonella from samples from joint hospital-maternity pens was significantly higher than the prevalence in samples from pens housing preparturient cows (0.8%, both farms) and postparturient cows on Farm B (8.8%). Multi-drug-resistant Salmonella Newport was isolated in high numbers from bedding material, feed refusals, lagoon slurry, and milk filters. One cow excreted the organism for 190 days. Interventional procedures yielded significant reductions in the prevalences of isolating the organism from fecal and environmental samples. Most isolates were of the C2 serogroup and were resistant to third-generation cephalosporins. Conclusions and Clinical Relevance - Management practices may be effective at reducing the persistence of MDR Salmonella spp in dairy herds, thus mitigating animal and public health risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 16S rRNA methyltransferase ArmA is a worldwide emerging determinant that confers high-level resistance to most clinically relevant aminoglycosides. We report here the identification and characterization of a multidrug-resistant Salmonella enterica subspecies I.4,12:i:- isolate recovered from chicken meat sampled in a supermarket on February 2009 in La Reunion, a French island in the Indian Ocean. Susceptibility testing showed an unusually high-level resistance to gentamicin, as well as to ampicillin, expanded-spectrum cephalosporins and amoxicillin-clavulanate. Molecular analysis of the 16S rRNA methyltransferases revealed presence of the armA gene, together with bla(TEM-1), bla(CMY-2), and bla(CTX-M-3). All of these genes could be transferred en bloc through conjugation into Escherichia coli at a frequency of 10(-5) CFU/donor. Replicon typing and S1 pulsed-field gel electrophoresis revealed that the armA gene was borne on an ~150-kb broad-host-range IncP plasmid, pB1010. To elucidate how armA had integrated in pB1010, a PCR mapping strategy was developed for Tn1548, the genetic platform for armA. The gene was embedded in a Tn1548-like structure, albeit with a deletion of the macrolide resistance genes, and an IS26 was inserted within the mel gene. To our knowledge, this is the first report of ArmA methyltransferase in food, showing a novel route of transmission for this resistance determinant. Further surveillance in food-borne bacteria will be crucial to determine the role of food in the spread of 16S rRNA methyltransferase genes worldwide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensively drug-resistant (XDR) Klebsiella pneumoniae isolates usually carry a single carbapenemase (e.g. KPC, NDM, OXA-48-like). Here we describe an XDR K. pneumoniae of sequence type 101 that was detected in the screening rectal swab of a patient transferred from the intensive care unit of a hospital located in Belgrade (Serbia) to Bern University Hospital (Switzerland). The isolate was resistant to all antibiotics with the exception of colistin [minimum inhibitory concentration] (MIC≤0.125μg/mL), tigecycline (MIC=0.5μg/mL) and fosfomycin (MIC=2μg/mL). The isolate co-possessed class B (NDM-1) and class D (OXA-48) carbapenemases, class A extended-spectrum β-lactamase (CTX-M-15), class C cephalosporinase (CMY-16), ArmA 16S rRNA methyltransferase, substitutions in GyrA and ParC, loss of OmpK35 porin, as well as other genes conferring resistance to quinolones (qnrA), tetracyclines [tet(A)], sulfonamides (sul1, sul2), trimethoprim (dfrA12, dfrA14), rifampicin (arr-1), chloramphenicol (cmlA1, floR) and streptomycin (aadA1). The patient was placed under contact isolation precautions preventing the spread of this nearly untreatable pathogen.