927 resultados para Clonal Anergy


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The most common test to identify latent tuberculosis is the tuberculin skin test that detects T cell responses of delayed type hypersensitivity type IV. Since it produces false negative reactions in active tuberculosis or in high-risk persons exposed to tuberculosis patients as shown in this report, we studied antibody profiles to explain the anergy of such responses in high-risk individuals without active infection. Our results showed that humoral immunity against tuberculin, regardless of the result of the tuberculin skin test is important for protection from active tuberculosis and that the presence of high antibody titers is a more reliable indicator of infection latency suggesting that latency can be based on the levels of antibodies together with in vitro proliferation of peripheral blood mononuclear cells in the presence of the purified protein derivative. Importantly, anti-tuberculin IgG antibody levels mediate the anergy described herein, which could also prevent reactivation of disease in high-risk individuals with high antibody titers. Such anti-tuberculin IgG antibodies were also found associated with blocking and/or stimulation of in vitro cultures of PBMC with tuberculin. In this regard, future studies need to establish if immune responses to Mycobacterium tuberculosis can generate a broad spectrum of reactions either toward Th1 responses favoring stimulation by cytokines or by antibodies and those toward diminished responses by Th2 cytokines or blocking by antibodies; possibly involving mechanisms of antibody dependent protection from Mtb by different subclasses of IgG.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our understanding of the origin and fate of the IgE-switched B cell has been markedly improved by studies in mouse models. The immediate precursor of the IgE-switched B cell is either a relatively naive nonswitched B cell or a mature IgG-switched B cell. These 2 routes are referred to as the direct and indirect pathways, respectively. IgE responses derived from each pathway differ significantly, largely reflecting the difference in time spent in a germinal center and thus time for clonal expansion, somatic hypermutation, affinity maturation, and acquisition of a memory phenotype. The clinical and therapeutic implications for IgE responses in human subjects are still a matter of debate, largely because the immunization procedures used in the animal models are significantly different from classical atopic sensitization to allergens from pollen and mites. On the basis of the limited information available, it seems likely that these atopic IgE responses are characterized by a relatively low IgG/IgE ratio, low B-cell memory, and modest affinity maturation, which fits well with the direct switching pathway. It is still unresolved how the IgE response evolves to cover a wide epitope repertoire involving many epitopes per allergen, as well as many different allergens from a single allergen source. © 2013 American Academy of Allergy, Asthma & Immunology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

T cell factor-1 (TCF-1) and lymphoid enhancer-binding factor 1, the effector transcription factors of the canonical Wnt pathway, are known to be critical for normal thymocyte development. However, it is largely unknown if it has a role in regulating mature T cell activation and T cell-mediated immune responses. In this study, we demonstrate that, like IL-7Ralpha and CD62L, TCF-1 and lymphoid enhancer-binding factor 1 exhibit dynamic expression changes during T cell responses, being highly expressed in naive T cells, downregulated in effector T cells, and upregulated again in memory T cells. Enforced expression of a p45 TCF-1 isoform limited the expansion of Ag-specific CD8 T cells in response to Listeria monocytogenes infection. However, when the p45 transgene was coupled with ectopic expression of stabilized beta-catenin, more Ag-specific memory CD8 T cells were generated, with enhanced ability to produce IL-2. Moreover, these memory CD8 T cells expanded to a larger number of secondary effectors and cleared bacteria faster when the immunized mice were rechallenged with virulent L. monocytogenes. Furthermore, in response to vaccinia virus or lymphocytic choriomeningitis virus infection, more Ag-specific memory CD8 T cells were generated in the presence of p45 and stabilized beta-catenin transgenes. Although activated Wnt signaling also resulted in larger numbers of Ag-specific memory CD4 T cells, their functional attributes and expansion after the secondary infection were not improved. Thus, constitutive activation of the canonical Wnt pathway favors memory CD8 T cell formation during initial immunization, resulting in enhanced immunity upon second encounter with the same pathogen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

West syndrome is a severe epilepsy, occurring in infancy, that comprises epileptic seizures known as spasms, in clusters, and a unique EEG pattern, hypsarrhythmia, with psychomotor regression. Maturation of the brain is a crucial component. The onset is within the first year of life, before 12 months of age. Patients are classified as cryptogenic (10 to 20%), when there are no known or diagnosed previous cerebral insults, and symptomatic (80 to 90%), when associated with pre-existing cerebral damages. The time interval from a brain insult to infantile spasms onset ranged from 6 weeks to 11 months. West syndrome has a time-limited natural evolutive course, usually disappearing by 3 or 4 years of age. In 62% of patients, there are transitions to another age-related epileptic encephalopathies, the Lennox-Gastaut Syndrome and severe epilepsy with multiple independent foci. Spontaneous remission and remission after viral infections may occur. Therapy with ACTH and corticosteroids are the most effective. Reports about intravenous immunoglobulins action deserve attention. There is also immune dysfunction, characterized mainly by anergy, impaired cell-mediated immunity, presence of immature thymocytes in peripheral blood, functional impairment of T lymphocytes induced by plasma inhibitory factors, and altered levels of immunoglobulins. Changes in B lymphocytes frequencies and increased levels of activated B cells have been reported. Sensitized lymphocytes to brain extract were also described. Infectious diseases are frequent and may, sometimes, cause fatal outcomes. Increase of pro-inflamatory cytokines in serum and cerebrospinal fluid of epileptic patients were reported. Association with specific HLA antigens was described by several authors (HLA-DR7, HLA-A7, HLA-DRw52, and HLA-DR5). Auto-antibodies to brain antigens, of several natures (N-methyl-d-aspartate glutamate receptor, gangliosides, brain tissue extract, synaptic membrane, and others), were described in epileptic patients and in epileptic syndromes. Experimental epilepsy studies with anti-brain antibodies demonstrated that epileptiform discharges can be obtained, producing hyperexcitability leading to epilepsy. We speculate that in genetically prone individuals, previous cerebral lesions may sensitize immune system and trigger an autoimmune disease. Antibody to brain antigens may be responsible for impairment of T cell function, due to plasma inhibitory effect and also cause epilepsy in immature brains. © 2008 Bentham Science Publishers Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differential expression of surface markers can frequently be used to distinguish functional subsets of T cells, yet a surface phenotype unique to T cells induced into an anergic state has not been described. Here, we report that CD4 T cells rendered anergic in vivo by superantigen can be identified by loss of the 6C10 T cell marker. Inoculation of Vβ8.1 T cell antigen receptor (TCR) transgenic mice with a Vβ8.1-reactive minor lymphocyte-stimulating superantigen (Mls-1a) induces tolerance to Mls-1a by clonal anergy. CD4 lymph node T cells from Mls-1a inoculated transgenic mice enriched for the 6C10− phenotype neither proliferate nor produce interleukin-2 upon TCR engagement, whereas 6C10+ CD4 T cells retain responsiveness. Analysis of T cell memory markers demonstrate that 6C10− T cells remain 3G11hi but express heterogeneous levels of CD45RB, CD62L, CD44, and the CD69 early activation marker, suggesting that T cells at various degrees of activation can be functionally anergic. These studies demonstrate that anergic T cells can be purified based on 6C10 expression permitting examination of issues concerning biochemical and biological features specific to T cell anergy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decline in the frequency of potent mesenchymal stem cells (MSCs) has been implicated in ageing and degenerative diseases. Increasing the circulating stem cell population can lead to renewed recruitment of these potent cells at sites of damage. Therefore, identifying the ideal cells for ex vivo expansion will form a major pursuit of clinical applications. This study is a follow-up of previous work that demonstrated the occurrence of fast-growing multipotential cells from the bone marrow samples. To investigate the molecular processes involved in the existence of such varying populations, gene expression studies were performed between fast- and slow-growing clonal populations to identify potential genetic markers associated with stemness using the quantitative real-time polymerase chain reaction comprising a series of 84 genes related to stem cell pathways. A group of 10 genes were commonly overrepresented in the fast-growing stem cell clones. These included genes that encode proteins involved in the maintenance of embryonic and neural stem cell renewal (sex-determining region Y-box 2, notch homolog 1, and delta-like 3), proteins associated with chondrogenesis (aggrecan and collagen 2 A1), growth factors (bone morphogenetic protein 2 and insulin-like growth factor 1), an endodermal organogenesis protein (forkhead box a2), and proteins associated with cell-fate specification (fibroblast growth factor 2 and cell division cycle 2). Expression of diverse differentiation genes in MSC clones suggests that these commonly expressed genes may confer the maintenance of multipotentiality and self-renewal of MSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolated from a small aspirate of bone marrow and readily generate single- cell-derived colonies. These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, BMSCs have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Thus, BMSCs are an attractive cell source for tissue engineering approaches. However, BMSCs are not homo- geneous and the quantity of stem cells decreases in the bone marrow in aged population. A sequential loss of lineage differentiation potential has been found in the mixed culture of bone marrow stromal cells due to a heterogenous popu- lation. Therefore, a number of studies have proposed that homogenous bone marrow stem cells can be generated from clonal culture of bone marrow cells and that BMSC clones have the greatest potential for the application of bone regeneration in vivo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most salad vegetables are eaten fresh by consumers. However, raw vegetables may pose a risk of transmitting opportunistic bacteria to immunocompromised people, including cystic fibrosis (CF) patients. In particular, CF patients are vulnerable to chronic Pseudomonas aeruginosa lung infections and this organism is the primary cause of morbidity and mortality in this group. Clonal variants of P. aeruginosa have been identified as emerging threats to people afflicted with CF; however it has not yet been proven from where these clones originate or how they are transmitted. Due to the organisms‟ aquatic environmental niche, it was hypothesised that vegetables may be a source of these clones. To test this hypothesis, lettuce, tomatoes, mushrooms and bean sprout packages (n = 150) were analysed from a green grocer, supermarket and farmers‟ market within the Brisbane region, availability permitting. The internal and external surfaces of the vegetables were separately analysed for the presence of clonal strains of P. aeruginosa using washings and homogenisation techniques, respectively. This separation was in an attempt to establish which surface was contaminated, so that recommendations could be made to decrease or eliminate P. aeruginosa from these foods prior to consumption. Soil and water samples (n = 17) from local farms were also analysed for the presence of P. aeruginosa. Presumptive identification of isolates recovered from these environmental samples was made based on growth on Cetrimide agar at 42°C, presence of the cytochrome-oxidase enzyme and inability to ferment lactose. P. aeruginosa duplex real-time polymerase chain reaction assay (PAduplex) was performed on all bacterial isolates presumptively identified as P. aeruginosa. Enterobacterial repetitive intergenic consensus strain typing PCR (ERIC-PCR) was subsequently performed on confirmed bacterial isolates. Although 72 P. aeruginosa were isolated, none of these proved to be clonal strains. The significance of these findings is that vegetables may pose a risk of transmitting sporadic strains of P. aeruginosa to people afflicted with CF and possibly, other immunocompromised people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axillary shoot proliferation was obtained using explants of Eucalyptus grandis L. juvenile and mature stages on a defined medium. Murashige and Skoog medium (MS) supplemented with benzyladenine (BA), naphthalene acetic acid (NAA) and additional thiamine. Excised shoots were induced to root on a sequence of three media: (1) White's medium containing indoleacetic acid (IAA), NAA and indole butyric acid; (IBA), (2) half-strength MS medium with charcoal and (3) half-strength MS liquid medium. The two types of explants differed in rooting response, with juvenile-derived shoots giving 60% rooting and adult-derived ones only 35%. Thus, the factors limiting cloning of selected trees in vitro are determined to be those controlling rooting of shoots in E. grandis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clonal forestry is the approach used for deployment of Pinus elliottii x P. caribaea hybrids in Queensland, Australia. Clonal forestry relies on the ability to maintain juvenility of stock plants while selections are made in field tests, so that genetic gains are not eroded by the effects of stock plant maturation. Two parallel approaches are employed in Queensland to maintain juvenility of clonal material. Firstly, the ortet and several ramets of each clone are maintained as archive hedges <20-cm height for the duration of field tests. Secondly, shoots from archive hedges are stored in tissue culture at low temperature and low irradiance to slow growth and slow maturation. Once the best clones have been identified, production hedges are derived from both archive hedges and tissue culture shoots. About 6 million rooted cuttings are produced annually, representing almost the entire planting program of Pinus in subtropical Queensland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In boreal forests, microorganisms have a pivotal role in nutrient and water supply of trees as well as in litter decomposition and nutrient cycling. This reinforces the link between above-ground and below-ground communities in the context of sustainable productivity of forest ecosystems. In northern boreal forests, the diversity of microbes associated with the trees is high compared to the number of distinct tree species. In this thesis, the aim was to study whether conspecific tree individuals harbour different soil microbes and whether the growth of the trees and the community structure of the associated microbes are connected. The study was performed in a clonal field trial of Norway spruce, which was established in a randomized block design in a clear-cut area. Since out-planting in 1994, the spruce clones showed two-fold growth differences. The fast-growing spruce clones were associated with a more diverse community of ectomycorrhizal fungi than the slow-growing spruce clones. These growth performance groups also differed with respect to other aspects of the associated soil microorganisms: the species composition of ectomycorrhizal fungi, in the amount of extraradical fungal mycelium, in the structure of bacterial community associated with the mycelium, and in the structure of microbial community in the organic layer. The communities of fungi colonizing needle litter of the spruce clones in the field did not differ and the loss of litter mass after two-years decomposition was equal. In vitro, needles of the slow-growing spruce clones were colonized by a more diverse community of endophytic fungi that were shown to be significant needle decomposers. This study showed a relationship between the growth of Norway spruce clones and the community structure of the associated soil microbes. Spatial heterogeneity in soil microbial community was connected with intraspecific variation of trees. The latter may therefore influence soil biodiversity in monospecific forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phylogenetic group D extraintestinal pathogenic Escherichia coli (ExPEC), including O15:K52:H1 and clonal group A, have spread globally and become fluoroquinolone-resistant. Here we investigated the role of canine feces as a reservoir of these (and other) human-associated ExPEC and their potential as canine pathogens. We characterized and compared fluoroquinolone-resistant E. coli isolates originally identified as phylogenetic group D from either the feces of hospitalized dogs (n = 67; 14 dogs) or extraintestinal infections (n = 53; 33 dogs). Isolates underwent phylogenetic grouping, random amplified polymorphic DNA (RAPD) analysis, virulence genotyping, resistance genotyping, human-associated ExPEC O-typing, and multi-locus sequence typing. Five of seven human-associated sequence types (STs) exhibited ExPEC-associated O-types, and appeared in separate RAPD clusters. The largest subgroup (16 fecal, 26 clinical isolates) were ST354 (phylogroup F) isolates. ST420 (phylogroup B2); O1-ST38, O15:K52:H1-ST393, and O15:K1-ST130 (phylogroup D); and O7-ST457, and O1-ST648 (phylogroup F) were also identified. Three ST-specific RAPD sub-clusters (ST354, ST393, and ST457) contained closely related isolates from both fecal or clinical sources. Genes encoding CTX-M and AmpC β-lactamases were identified in isolates from five STs. Major human-associated fluoroquinolone-resistant ± extended-spectrum cephalosporin-resistant ExPEC of public health importance may be carried in dog feces and cause extraintestinal infections in some dogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is one of the most studied human malignancies. It is caused by an autonomously active tyrosine kinase BCR-ABL, which is a result from a translocation between chromosomes 9 and 22 in the hematopoietic stem cell. As an outcome, a Philadelphia (Ph) chromosome is formed. BCR-ABL causes disturbed cell proliferation among other things. Although targeted tyrosine kinase inhibitor therapy has been developed in the beginning of the millenium and the survival rate has increased significantly, it is still not known why some patients benefit more from the treatment than others. Furthermore, the therapy is not considered to be curative. Before the era of tyrosine kinase inhibitors, the first-line treatment for CML was interferon-? (IFN-?). However, only a small proportion of patients benefitted from the treatment. Of these patients, a few were able to discontinue the treatment without renewal of the disease. The mechanism of IFN-? is not completely understood, but it is believed that differences in the immune system can be one of the reasons why some patients have better therapy response. Kreutzman, Rohon et al. have recently discovered that patients who have been able to stop IFN-? treatment have an increased number of NK- and T-cells. They also have a unique clonal T-cell population and more cytotoxic CD8+ T-cells and less CD4+ T-cells. The aim of this master’s thesis was to study the function of T- and NK-cells in IFN-? treated patients. Although it was shown earlier that IFN-? treated patients have increased NK-cell count, the function of these cells was unknown. Therefore, we have now investigated the killing potential of patients’ NK-cells, their activation status and cell surface antigen expression. In addition, we have also studied the activation status of patients’ T-cells and their cytotoxic properties. We observed that NK-cells from patients treated with IFN-? are unable to kill leukemic cells (K562) than NK-cells from healthy controls. In addition, patients on IFN-? treatment have more active T-cells and their NK-cells have an undifferentiated immunoregulatory phenotype. Patients that have been able to stop the treatment have anergic T-and NK-cells. As a conclusion our results suggest that IFN-? therapy induces increased NK-cell count, NK-cell immunoregulatory functions and more active T-cells. After stopping IFN-? therapy, NK- and T-cells from CML patients restore anergy typical for CML.