491 resultados para Chemiluminescence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emission spectroscopy was used to investigate ignition and combustion characteristics of supersonic combustion ramjet engines. Two-dimensional scramjet models with inlet injection, fuelled with hydrogen gas, were used in the study. The scramjet engines were configured to operate in radical farming mode, where combustion radicals are formed behind shock waves reflected at the walls. The chemiluminescence emission signals were recorded in a two-dimensional, time-integrated fashion to give information on the location and distribution of the radical farms in the combustors. High signal levels were detected in localised regions immediately downstream of shock reflections, an indication of localised hydroxyl formation supporting the concept of radical farming. Results are presented for a symmetric as well as an asymmetric scramjet geometry. These data represent the first successful visualisation of radical farms in the hot pockets of a supersonic combustor. Spectrally resolved measurements have been obtained in the ultraviolet wavelength range between 300 and 400 nm. This data shows that the OH! chemiluminescence signal around 306nm is not the most dominant source of radiation observed in the radical farms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tomographic reconstruction of OH* chemiluminescence was performed on two interacting turbulent premixed bluff-body stabilized flames under steady flow conditions and acoustic excitation. These measurements elucidate the complex three-dimensional (3D) vortex-flame interactions which have previously not been accessible. The experiment was performed using a single camera and intensifier, with multiple views acquired by repositioning the camera, permitting calculation of the mean and phase-averaged volumetric OH* distributions. The reconstructed flame structure and phase-averaged dynamics are compared with OH planar laser-induced fluorescence and flame surface density measurements for the first time. The volumetric data revealed that the large-scale vortex-flame structures formed along the shear layers of each flame collide when the two flames meet, resulting in complex 3D flame structures in between the two flames. With a fairly simple experimental setup, it is shown that the tomographic reconstruction of OH* chemiluminescence in forced flames is a powerful tool that can yield important physical insights into large-scale 3D flame dynamics that are important in combustion instability. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports an analytical method for separating, identifying, and quantifying sulfur-containing compounds in crude oil fraction (IBP-360degreesC) samples based on comprehensive two-dimensional gas chromatography coupled with a sulfur chemiluminescence detector. Various sulfur-containing compounds and their groups were analyzed with one direct injection. 3620 peaks were detected including 1722 thiols/thioethers/ disulfides/1-ring thiophenes, 953 benzothiophenes, 704 dibenzothiophenes, and 241 benzonaphthothiophenes. The target sulfur compounds and their groups were identified based on the group separation feature and structured retention of comprehensive two-dimensional gas chromatography as well as standard substances. The quantitative analysis of major sulfur-containing compounds and total sulfur was based on the linear response of the sulfur chemiluminescence detector using the internal standard method. The sulfur contents of target sulfur compounds and their groups in 4 crude oil fractions were also determined. The recoveries for standard sulfur-containing compounds were in the range of 90-102%. The quantitative result of total sulfur in the Oman crude oil fraction sample was compared with those from ASTM D 4294 standard method (total S by X-ray fluorescence spectrometry), the relative deviation (RD%) was 4.2% and the precision of the method satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports an analytical method for separating, identifying and quantitating sulfur-containing compounds and their groups in diesel oils (170-400degreesC) using comprehensive two-dimensional gas chromatography coupled with a sulfur chemiluminescence detector. The identification of target compounds and their groups was based on standard substances, the group separation feature and the-effect of comprehensive two-dimensional gas chromatography. The quantitative analysis on major sulfur compounds and total sulfur was carried out based on the linear response of sulfur chemiluminescence detector and the internal standards method. The results of total sulfur determination in the samples were compared with those from ASTM D 4294 standard method, the R.S.D. percentage were <6.02%, correctness of this method can meet the industrial requirement. To the end, the method developed was used to investigate the sulfur-containing compounds in different diesel oils, the result shows that the distribution of sulfur-containing compounds in diesel oils from different process units are apparently different. The sulfur compounds in fluid catalytic cracking (FCC), residuum fluid catalytic cracking (RFCC) diesel oils mainly exist in the form of alkyl-substituted dibenzothiophenes that add up to about 40-50% of the total sulfur, while this number is only 6-8 and 20-28% in visbreaking (VB) and delayed-coking (DC) diesel oils, respectively. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We described the use of silica nanoparticles as building blocks for the immobilization of electrogenerated chemiluminescence (ECL) reagent Ru(bpy)3" and the fabrication of layer-by-layer assembly film by alternating the deposition of the Ru(bpy)3 2'-doped silica nanoparticles and Au nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a designed high-activity DNAzyme as the catalytic label, an ultrasensitive chemiluminescence thrombin aptasensor is developed, enabling a 10- to 100-fold improvement in the detection sensitivity as compared with previous counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among various ECL systems, such as 9,10-diphenylanthracene, lucigenin, tris(2,2'-bipyridyl) ruthenium, peroxyoxalate, luminol, graphene, and nanocrystals, Ru(bpy)(3)(2+) ECL is one of the most widely studied ECL systems in recent years due to its broad applications in immunoassays, DNA probe assays, coreactants analysis, and aptasensors. In this review, the progress in Ru(bpy)(3)(2+) ECL has been summarized on the whole, and the future research trends have been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-step synthesis of Ru (bpy)(3) Cl-2-immobilized (bpy = 2,2'-bipyridine) silica nanoparticles (Ru-silica nanoparticles) for use in electrogenerated-chemiluminescence (ECL) detection is reported. Ru-silica nanoparticles are prepared by using the Stober method. Compared with free Ru(bpy)(3)Cl-2, Ru-silica nanoparticles are seen to exhibit a red-shift of the UV-vis absorbance peak and a longer fluorescence lifetime, which are attributed to the electrostatic interaction of Ru(bpy)(3)(2+) and silica. Because silica nanoparticles are used as immobilization matrices, the surfaces of Ru-silica nanoparticles are easily modified or functionalized via the assembly of other nanoparticles, such as Au. For ECL detection, Au-colloid-modified Ru-silica nanoparticles are immobilized on a 3-mercaptopropyl-trimethoxysilane-modified indium tin oxide electrode surface by Au-S interaction; the surface concentration of electroactive Ru(bpy)(3)Cl-2 is obviously higher than that in silica films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on electrogenerated chemiluminescence (ECL), a novel method for fabrication of alcohol dehydrogenase (ADH) biosensor by self-assembling ADH to Ru(bpy)(3)(2+) -AuNPs aggregates (Ru-AuNPs) on indium tin oxide (ITO) electrode surface has been developed. Positively charged Ru(bpy)(3)(2+) could be immobilized stably on the electrode surface with negatively charged AuNPs in the form of aggregate via electrostatic interaction. On the other hand, AuNPs are favourable candidates for the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to bind strongly with AuNPs. Moreover, AuNPs can act as tiny conduction centers to facilitate the transfer of electrons. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate, and it displayed wide linear range, high sensitivity and good stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An aptamer-based label-free approach to hemin recognition and DNA assay using capillary electrophoresis with chemiluminescence detection is introduced here. Two guanine-rich DNA aptamers were used as the recognition element and target DNA, respectively. In the presence of potassium ions, the two aptamers folded into the G-quartet structures, binding hemin with high specificity and affinity. Based on the G-quartet-hemin interactions, the ligand molecule was specifically recognized with a K (d)approximate to 73 nM, and the target DNA could be detected at 0.1 mu M. In phosphate buffer of pH 11.0, hemin catalyzed the H2O2-mediated oxidation of luminol to generate strong chemiluminescence signal; thus the target molecule itself served as an indicator for the molecule-aptamer interaction, which made the labeling and/or modification of aptamers or target molecules unnecessary. This label-free method for molecular recognition and DNA detection is therefore simple, easy, and effective.