226 resultados para Ceria


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reticulated porous Ti3AlC2 ceramic, a member of the MAX-phase family (Mn+1AXn phases, where M is an early transition metal, A is an A-group element, and X is carbon and/or nitrogen), was prepared from the highly dispersed aqueous suspension by a replica template method. Through a cathodic electrogeneration method, nanocrystalline catalytic CeO2 coatings were deposited on the conductive porous Ti 3AlC2 supports. By adjusting the pH value and cathodic deposition current, coatings exhibiting nanocellar, nanosheets-like, or bubble-free morphologies can be obtained. This work expects to introduce a novel practically feasible material system and a catalytic coating preparation technique for gas exhaust catalyst devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water-gas shift (WGS) reaction was carried out in the presence of Pd and Pt substituted nanocrystalline ceria catalysts synthesized by solution combustion technique. The catalysts were characterized by powder XRD and XPS. The noble metals were found to be present in ionic form substituted for the cerium atoms. The catalysts showed highactivity for the WGS reaction with high conversions below 250 degrees C. The products of reaction were only carbon dioxide and hydrogen, and no hydrocarbons were observed even in trace quantities. The reactions were carried out with different amounts of noble metal ion substitution and 2% Pt substituted ceria was found to be the best catalyst. The various possible mechanisms for the reaction were proposed and tested for their consistency with experimental data. The dual site mechanism best described the kinetics of the reaction and the corresponding rate parameters were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noble metal substituted ionic catalysts were synthesized by solution combustion technique. The compounds were characterized by X-ray diffraction, FT-Raman spectroscopy, and X-ray photoelectron spectroscopy. Zirconia supported compounds crystallized in tetragonal phase. The solid solutions of ceria with zirconia crystallized in fluorite structure. The noble metals were substituted in ionic form.The water-gas shift reaction was carried out over the catalysts.Negligible conversions were observed with unsubstituted compounds. The substitution of a noble metal ion was found to enhance the reaction rate. Equilibrium conversion was obtained below 250 degrees C in the presence of Pt ion substituted compounds. The formation of Bronsted acid-Bronsted base pairs was proposed to explain the activity of zirconia catalysts. The effect of oxide ion vacancies on the reactions over substituted ceria-zirconia solid solutions was established. (c)2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation of the dye, Orange G, was carried out in the presence of H2O2 and Pd-substituted/impregnated CeO2. The effects of pH, initial dye concentration, initial H2O2 concentration, temperature, catalyst loading, and Pd content in the catalyst on the degradation of the dye were investigated. Eight to twelve percent degradation of the dye was obtained in 1 h when the reaction was carried out in the presence of CeO2 or H2O2 or Pd-substituted/impregnated CeO2 while 17% and 97% degradation was obtained when H2O2 was used with Pd-impregnated CeO2 and Pd-substituted CeO2, respectively. This difference clearly indicated that the ionic substitution of Pd played a key role in the degradation of the dye. A mechanism for the reaction was proposed based upon the catalyst structure and the electron transfer processes that take place in the metal ion substituted system in a reducible oxide. The reaction was found to follow first order kinetics and the influence of all the parameters on the degradation kinetics was compared using the rate constants. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured ceria-zirconia solid solutions (Ce1 − xZrxO2, X = 0 to 0.9) have been synthesized by a single step solution combustion process using cerous nitrate, zirconyl nitrate and oxalyl dihydrazide (ODH) / carbohydrazide (CH). The as-synthesized powders show extensive XRD line broadening and the crystallite sizes calculated from the XRD line broadening are in the nanometer range (6–11 nm). The combustion derived ceria zirconia solid solutions have high surface area in the range of 36–120 m2/g. Calcination of Ce1 −xZrxO2 at 1350 °C showed three distinct solid solution regions: single phase cubic (x ≤ 0.2), biphasic cubic-tetragonal (0.2 < x Image .8) and tetragonal (x > 0.8). When x ≥ 0.9, the metastable tetragonal phase formed transforms to monoclinic phase on cooling after calcination above 1100 °C. The homogeneity of Ce1 − xZrxO2 has been confirmed by EDAX analysis. The Temperature Programmed Reduction (TPR) measurement of Ce0.5Zr0.5O2 was carried out with H2 and the TPR profile showed two water formation peaks corresponding to the utilization of surface and bulk oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the activity of ionic substituted bimetallic Cu-Ni-modified ceria and Cu-Fe-modified ceria catalysts for low-temperature water gas shift (WGS) reaction. The catalysts were synthesized in nano-crystalline size by a sonochemical method and characterized by XRD, TEM, XPS, TPR and BET surface analyzer techniques. Due to the ionic substitution of these aliovalent base metals, lattice oxygen in CeO2 is activated and these catalysts show high activity for WGS at low temperature. An increase in the reducibility and oxygen storage capacity of bimetallic substituted CeO2, as evidenced by H-2-TPR experiments, is the primary reason for the higher activity towards WGS reaction. In the absence of feed CO2 and H-2, 100% conversion of CO with 100% H-2 selectivity was observed at 320 degrees C and 380 degrees C, for Cu-Ni-modified ceria and Cu-Fe-modified ceria catalysts. Notably, in the presence of feed H2O. a reverse WGS reaction does not occur over these ceria modified catalysts. A redox reaction mechanism, involving oxidation of CO adsorbed on the metal was developed to correlate the experimental data and determine kinetic parameters. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Sr doping in CeO2 for its use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs) has been explored here. Ce1-xSrxO2-delta (x = 0.05-0.2) are successfully synthesized by citrate-complexation method. XRD, Raman, FT-IR, FE-SEM/EDX and electrochemical impedance spectra are used for structural and electrical characterizations. The formation of well crystalline cubic fluorite structured solid solution is observed for x = 0.05 based on XRD and Raman spectra. For compositions i.e., x > 0.05, however, a secondary phase of SrCeO3 is confirmed by the peak at 342 cm(-1) in Raman spectra. Although the oxygen ion conductivity was found to decrease with increase in x, based on ac-impedance studies, conductivity of Ce0.95Sr0.05O2-delta was found to be higher than of Ce0.95Gd0.1O2-delta and Ce0.8Gd0.2O2-delta. The decrease in conductivity of Ce1-xSrxO2-delta with increasing dopant concentration is ascribed to formation of impurity phase SrCeO3 as well as the formation of neutral associated pairs, Se `' Ce V-o. The activation energies are found to be 0.77, 0.83, 0.85 and 0.90 eV for x = 0.05, 0.1, 0.15 and 0.20, respectively. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to develop heterogeneous visible light active photocatalysts using AgBr and Ag3PO4 using CeO2 nanoflakes as an efficient substrate. Ascorbic acid was employed as a fuel to synthesize fine ceria nanoflakes by a facile solution combustion process. AgBr and Ag3PO4 were decorated on ceria to prepare AgBr/Ag3PO4/ceria nanocomposites. The structure of the composite was determined by X-ray diffraction analysis. Novel flakelike morphology was revealed using electron microscopy techniques. The nanocomposites exhibit excellent photocatalytic activity under visible light compared to pristine ceria nanoparticles. The nanocomposite catalyst particles degraded both anionic and cationic dyes. It also exhibited efficient antimicrobial activity under visible light. The AgBr/Ag3PO4/ceria nanocomposite was characterized using X-ray diffraction analysis, diffuse reflectance spectroscopy, electron microscopy, BET surface area analysis, and X-ray photoelectron spectroscopy, and the reasons for enhanced photocatalytic activity were elucidated. The presence of silver based semiconductors on ceria has shown to decrease charge recombination through photoluminescence analysis that attributed for enhanced photocatalytic activity. The AgBr/Ag3PO4/ceria nanocomposite has shown a stable performance after many repeated cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a plausible dual-site mechanism and microkinetic model for CO oxidation over palladium-substituted ceria incorporating the theoretical oxygen storage capacity of different-catalysts into the kinetic model. A rate expression without prior assumption of rate-determining steps has been developed for the proposed microkinetic model using reaction route analysis. Experiments were conducted using various percentages of palladium in ceria that were synthesized by solution combustion. Obtained catalysts were characterized by X-ray diffraction, X-ray photoelectron spectra, and Brunauer-Emmett-Teller surface area measurements. A detailed mechanism was, developed, and the kinetic parameters and rate expression were validated with the conversion data obtained in the presence of the catalysts. Furthermore, a reduced rate expression based on rate-determining step and most abundant reactive intermediate approximation was obtained and tested against the original rate expression for different experimental conditions. From the results obtained it was concluded that the simulated rate predictions matched the experimental trend with reasonable accuracy, validating the kinetic parameters proposed it this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acceptor-doped ceria has been recognized as a promising intermediate temperature solid oxide fuel cell electrode/electrolyte material. For practical implementation of ceria as a fuel cell electrolyte and for designing model experiments for electrochemical activity, it is necessary to fabricate thin films of ceria. Here, metal-organic chemical vapor deposition was carried out in a homemade reactor to grow ceria films for further electrical, electrochemical, and optical characterization. Doped/undoped ceria films are grown on single crystalline oxide wafers with/without Pt line pattern or Pt solid layer. Deposition conditions were varied to see the effect on the resultant film property. Recently, proton conduction in nanograined polycrystalline pellets of ceria drew much interest. Thickness-mode (through-plane, z-direction) electrical measurements were made to confirm the existence of proton conductivity and investigate the nature of the conduction pathway: exposed grain surfaces and parallel grain boundaries. Columnar structure presumably favors proton conduction, and we have found measurable proton conductivity enhancement. Electrochemical property of gas-columnar ceria interface on the hydrogen electrooxidation is studied by AC impedance spectroscopy. Isothermal gas composition dependence of the electrode resistance was studied to elucidate Sm doping level effect and microstructure effect. Significantly, preferred orientation is shown to affect the gas dependence and performance of the fuel cell anode. A hypothesis is proposed to explain the origin of this behavior. Lastly, an optical transmittance based methodology was developed to obtain reference refractive index and microstructural parameters (thickness, roughness, porosity) of ceria films via subsequent fitting procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid solutions of Ce1-xNdxO2-x/2 (0.05 <= x <= 0.2) and (Ce1-xNdx)(0.95)MO0.05O2-delta (0.05 <= x <= 0.2) have been synthesized by a modified sol-gel method. Both materials have very low content of SiO2 (similar to 27 ppm). Their structures and ionic conductivities were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and electrochemical impedance spectroscopy (M). The XRD patterns indicate that these materials are single phases with a cubic fluorite structure. The powders calcined at 300 degrees C with a crystal size of 5.7 nm have good sinterability, and the relative density could reach above 96% after being sintered at 1450 degrees C. With the addition Of MoO3, the sintering temperature could be decreased to 1250 degrees C. Impedance spectroscopy measurement in the temperature range of 250-800 degrees C indicates that a sharp increase of conductivity is observed when a small amount of Nd2O3 is added into ceria, of which Ce0.85Nd0.15O1.925 (15NDC) shows the highest conductivity. With the addition of a small amount Of MoO3, the grain boundary conductivity of 15NDC at 600 degrees C increases from 2.56 S m(-1) to 5.62 S m(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of solid electrolytes, (Ce(0.8)Ln(0.2))(1 - x)MxO2 - delta(Ln = La, Nd, Sm, Gd, M:Alkali-earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 degreesC. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte is improved. The effects of rare-earth and alkali-earth ions on the electricity were discussed. The open-circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce0.8Sm0.2)(1 - 0.05)Ca0.05O2 - delta as electrolyte are 0.86 V and 33 mW . cm(-2), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of solid electrolytes (Ce0.8RE0.2)(1-x)MxO2-delta(RE: Rare earth, M: Alkali earth) were prepared by sol-gel methods. XRD indicated that a pure fluorite phase was formed at 800 degrees C. The synthesis temperature by the sol-gel methods was about 700 degrees C lower than by the traditional ceramic method. The electrical conductivity and impedance spectra were measured. XPS showed that the oxygen vacancy increased obviously by doping MO, thus, resulting in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte was improved. The effects of RE2O3 and MO on the electrical properties were discussed. The conductivity and the oxygen ionic transport number of (Ce0.8Sm0.2)(1-0.05)Ca0.05O2-delta is 0.126 S.cm(-1) and 0.99 at 800 degrees C, respectively.