937 resultados para Cardiovascular system - Diseases - Nursing
Resumo:
Abstract
Thiazolidinediones (TZDs) have been used for the treatment of hyperglycaemia in type 2 diabetes for the past 10 years. They may delay the development of type 2 diabetes in individuals at high risk of developing the condition, and have been shown to have potentially beneficial effects on cardiovascular risk factors. TZDs act as agonists of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) primarily in adipose tissue. PPAR-gamma receptor activation by TZDs improves insulin sensitivity by promoting fatty acid uptake into adipose tissue, increasing production of adiponectin and reducing levels of inflammatory mediators such as tumour necrosis factor-alpha (TNF-alpha), plasminogen activator inhibitor-1(PAI-1) and interleukin-6 (IL-6). Clinically, TZDs have been shown to reduce measures of atherosclerosis such as carotid intima-media thickness (CIMT). However, in spite of beneficial effects on markers of cardiovascular risk, TZDs have not been definitively shown to reduce cardiovascular events in patients, and the safety of rosiglitazone in this respect has recently been called into question. Dual PPAR-alpha/gamma agonists may offer superior treatment of insulin resistance and cardioprotection, but their safety has not yet been assured
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.
Resumo:
Sympathetic and parasympathetic divisions of the autonomic nervous system constantly control the heart (sympathetic and parasympathetic divisions) and blood vessels (predominantly the sympathetic division) to maintain appropriate blood pressure and organ blood flow over sometimes widely varying conditions. This can be adversely affected by pathological conditions that can damage one or both branches of autonomic control. The set of teaching laboratory activities outlined here uses various interventions, namely, 1) the heart rate response to deep breathing, 2) the heart rate response to a Valsalva maneuver, 3) the heart rate response to standing, and 4) the blood pressure response to standing, that cause fairly predictable disturbances in cardiovascular parameters in normal circumstances, which serve to demonstrate the dynamic control of the cardiovascular system by autonomic nerves. These tests are also used clinically to help investigate potential damage to this control.
Resumo:
A cardiovascular disease risk factor reduction program was implemented in the Niagara region. To gain an understanding of this program from the participants ' perspective, 10 participants of the program were interviewed to document their perceptions of what they learned in the program, their perceptions of their behaviour change and their perceptions of factors that facilitated or impeded any behaviour change. The learning style inventory and PET test were also given to the participants to further understand their perceptions. Findings unique to this study highlighted aspects of the andragogical model, self-directed learning theory, learning style preference and psychological type that were prominent in the participants' comments and perspectives. Implications for practice, theory development and further research are suggested.
Resumo:
The present study investigates adrenergic regulation of the systemic and pulmonary circulations of the anaesthetised South American rattlesnake, Crotalus durissus. Haemodynamic measurements were made following bolus injections of adrenaline and adrenergic antagonists administered through a systemic arterial catheter. Adrenaline caused a marked systemic vasoconstriction that was abolished by phentolamine, indicating this response was mediated through alpha-adrenergic receptors. Injection of phentolamine gave rise to a pronounced vasodilatation (systemic conductance (G(sys)) more than doubled), while injection of propranolol caused a systemic vasoconstriction, pointing to a potent alpha-adrenergic, and a weaker beta-adrenergic tone in the systemic vasculature of Crotalus. Overall, the pulmonary vasculature was far less responsive to adrenergic stimulation than the systemic circulation. Adrenaline caused a small but non-significant pulmonary vasodilatation and there was tendency of reducing this dilatation after either phentolamine or propranolol. Injection of phentolamine increased pulmonary conductance (G(pul)), while injection of propranolol produced a small pulmonary constriction, indicating that alpha-adrenergic and beta-adrenergic receptors contribute to a basal regulation of the pulmonary vasculature. Our results suggest adrenergic regulation of the systemic vasculature, rather than the pultrionary, may be an important factor in the development of intracardiac shunts. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
CONTEXTUALIZAÇÃO: O teste de capacidade vital forçada (CVF) é rotineiramente realizado na avaliação da função pulmonar de pacientes com doença pulmonar obstrutiva crônica (DPOC). Entretanto, permanece pouco compreendida a influência do teste de CVF sobre o sistema cardiovascular de pacientes com DPOC. OBJETIVOS: Analisar o comportamento da frequência cardíaca (FC), pressão arterial (PA) e variabilidade da frequência cardíaca (VFC) no teste de CVF na DPOC. MÉTODOS: Dezenove homens com DPOC (72 ± 7 anos, no estágio de gravidade GOLD I=3, II=5, III=7 e IV=4 pacientes) realizaram a manobra de CVF e tiveram sua FC monitorada durante todo o exame, e a VFC analisada nos domínios do tempo (rMSSD) e da frequência (BF, AF e BF/AF) durante o repouso, antes e após a melhor manobra de CVF. A PA foi analisada no repouso, imediatamente ao final da manobra de CVF e 10 minutos após o término de todos os testes. RESULTADOS: Ao início da manobra de CVF, a FC reduziu (p<0,001) e, em seguida, aumentou progressivamente até o final do teste (p<0,001). Após término da manobra, a FC continuou a aumentar até atingir um pico (p<0,001) e depois caiu rapidamente a valores inferiores aos de repouso (p<0,001) e retornou ao seu valor basal. A PA e os índices da VFC não sofreram alterações nos períodos analisados. CONCLUSÃO: O teste de CVF influencia o comportamento da FC, sem alterar o seu controle autonômico, bem como a PA em pacientes com DPOC nos períodos analisados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Physical exercise promotes beneficial health effects by preventing or reducing the deleterious effects of pathological conditions, such as arterial hypertension, coronary artery disease, atherosclerosis, diabetes mellitus, osteoporosis, Parkinson's disease, and Alzheimer disease. Human movement studies are becoming an emerging science in the epidemiological area and public health. A great number of studies have shown that exercise training, in general, reduces sympathetic activity and/or increases parasympathetic tonus either in human or laboratory animals. Alterations in autonomic nervous system have been correlated with reduction in heart rate (resting bradycardia) and blood pressure, either in normotensive or hypertensive subjects. However, the underlying mechanisms by which physical exercise produce bradycardia and reduces blood pressure has not been fully understood. Pharmacological studies have particularly contributed to the comprehension of the role of receptor and transduction signaling pathways on the heart and blood vessels in response to exercise training. This review summarizes and examines the data from studies using animal models and human to determine the effect of exercise training on the cardiovascular system. (c) 2007 Elsevier B.V. All rights reserved.