956 resultados para Cardiology and Cardiovascular Medicine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) activity. BH4 levels are regulated by de novo biosynthesis; the rate-limiting enzyme is GTP cyclohydrolase I (GTPCH). BH4 activates and promotes homodimerisation of purified eNOS protein, but the intracellular mechanisms underlying BH4-mediated eNOS regulation in endothelial cells remain less clear. We aimed to investigate the role of BH4 levels in intracellular eNOS regulation, by targeting the BH4 synthetic pathway as a novel strategy to modulate intracellular BH4 levels. Methods: We constructed a recombinant adenovirus, AdGCH, encoding human GTPCH. We infected human endothelial cells with AdGCH, investigated the changes in intracellular biopterin levels, and determined the effects on eNOS enzymatic activity, protein levels and dimerisation. Results: GTPCH gene transfer in EAhy926 endothelial cells increased BH4 >10-fold compared with controls (cells alone or control adenovirus infection), and greatly enhanced NO production in a dose-dependent, eNOS-specific manner. We found that eNOS was principally monomeric in control cells, whereas GTPCH gene transfer resulted in a striking increase in eNOS homodimerisation. Furthermore, the total amounts of both native eNOS protein and a recombinant eNOS–GFP fusion protein were significantly increased following GTPCH gene transfer. Conclusions: These findings suggest that GTPCH gene transfer is a valid approach to increase BH4 levels in human endothelial cells, and provide new evidence for the relative importance of different mechanisms underlying BH4-mediated eNOS regulation in intact human endothelial cells. Additionally, these observations suggest that GTPCH may be a rational target to augment endothelial BH4 and normalise eNOS activity in endothelial dysfunction states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atheroma formation involves the movement of vascular smooth muscle cells (VSMC) into the subendothelial space. The aim of this study was to determine the involvement of PI3K and MAPK pathways and the importance of cross-talk between these pathways, in glucose-potentiated VSMC chemotaxis to serum factors. VSMC chemotaxis occurred in a serum gradient in 25 mmol/L glucose (but not in 5 mmol/L glucose) in association with increased phosphorylation (activation) of Akt and ERK1/2 in PI3K and MAPK pathways, respectively. Inhibitors of these pathways blocked chemotaxis, as did an mTOR inhibitor. VSMC expressed all class IA PI3K isoforms, but microinjection experiments demonstrated that only the p110beta isoform was involved in chemotaxis. ERK1/2 phosphorylation was reduced not only by MAPK pathway inhibitors but also by PI3K and mTOR inhibitors; when PI3K was inhibited, ERK phosphorylation could be induced by microinjected activated Akt, indicating important cross-talk between the PI3K and ERK1/2 pathways. Glucose-potentiated phosphorylation of molecules in the p38 and JNK MAPK pathways inhibited these pathways but did not affect chemotaxis. The statin, mevinolin, blocked chemotaxis through its effects on the MAPK pathway. Mevinolin-inhibited chemotaxis was restored by farnesylpyrophosphate but not by geranylgeranylpyrophosphate; in the absence of mevinolin, inhibition of farnesyltransferase reduced ERK phosphorylation and blocked chemotaxis, indicating a role for the Ras family of GTPases (MAPK pathway) under these conditions. In conclusion, glucose sensitizes VSMC to serum, inducing chemotaxis via pathways involving p110beta-PI3K, Akt, mTOR, and ERK1/2 MAPK. Cross-talk between the PI3K and MAPK pathways is necessary for VSMC chemotaxis under these conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperglycemia increases expression of platelet-derived growth factor (PDGF)-beta receptor and potentiates chemotaxis to PDGF-BB in human aortic vascular smooth muscle cells (VSMCs) via PI3K and ERK/MAPK signaling pathways. The purpose of this study was to determine whether increased activation of protein kinase C (PKC) isoforms had a modulatory effect on the PI3K and ERK/MAPK pathways, control of cell adhesiveness, and movement. All known PKC isoforms were assessed but only PKC alpha and PKC beta II levels were increased in 25 mmol/L glucose. However, only PKC beta II inhibition affected (decreased) PI3K pathway and MAPK pathway activities and inhibited PDGF-beta receptor upregulation in raised glucose, and specific MAPK inhibition was required to completely block the effect of glucose. In raised glucose conditions, activity of the ERK/MAPK pathway, PI3K pathway, and PKC beta II were all sensitive to aldose reductase inhibition. Chemotaxis to PDGF-BB (360 pmol/L), absent in 5 mmol/L glucose, was present in raised glucose and could be blocked by PKC beta II inhibition. Formation of lamellipodia was dependent on PI3K activation and filopodia on MAPK activation; both lamellipodia and filopodia were eliminated when PKC beta II was inhibited. FAK phosphorylation and cell adhesion were reduced by PI3K inhibition, and although MAPK inhibition prevented chemotaxis, it did not affect FAK phosphorylation or cell adhesiveness. In conclusion, chemotaxis to PDGF-BB in 25 mmol/L glucose is PKC beta II-dependent and requires activation of both the PI3K and MAPK pathways. Changes in cell adhesion and migration speed are mediated mainly through the PI3K pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study investigated whether differences exist in atherogen-induced migratory behaviors and basal antioxidant enzyme capacity of vascular smooth muscle cells (VSMC) from human coronary (CA) and internal mammary (IMA) arteries. Methods: Migration experiments were performed using the Dunn chemotaxis chamber. The prooxidant [NAD(P)H oxidase] and antioxidant [NOS, superoxide dismutase, catalase and glutathione peroxidase] enzyme activities were determined by specific assays. Results: Chemotaxis experiments revealed that while both sets of VSMC migrated towards platelet-derived growth factor-BB (1-50 ng/ml) and angiotensin II (1-50 nM), neither oxidized-LDL (ox-LDL, 25-100 ng/ml) nor native LDL (100 ng/ml) affected chemotaxis in IMA VSMC. However, high dose ox-LDL produced significant chemotaxis in CAVSMC that was inhibited by pravastatin (100 nM), mevastatin (10 nM), losartan (10 nM), enalapril (1 micro.M), and MnTBAP (a free radical scavenger, 50 micro.M). Microinjection experiments with isoprenoids i.e. geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) showed distinct involvement of small GTPases in atherogeninduced VSMC migration. Significant increases in antioxidant enzyme activities and nitrite production along with marked decreases in NAD(P)H oxidase activity and superoxide levels were determined in IMA versus CA VSMC. Conclusions: Enhanced intrinsic antioxidant capacity may confer on IMAVSMC resistance to migration against atherogenic agents. Drugs that regulate ox-LDL or angiotensin II levels also exert antimigratory effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have suggested that men with raised plasma triglycerides (TGs) in combination with adverse levels of other lipids may be at special risk of subsequent ischemic heart disease (IHD). We examined the independent and combined effects of plasma lipids at 10 years of follow-up. We measured fasting TGs, total cholesterol (TC), and high density lipoprotein cholesterol (HDLC) in 4362 men (aged 45 to 63 years) from 2 study populations and reexamined them at intervals during a 10-year follow-up. Major IHD events (death from IHD, clinical myocardial infarction, or ECG-defined myocardial infarction) were recorded. Five hundred thirty-three major IHD events occurred. All 3 lipids were strongly and independently predictive of IHD after 10 years of follow-up. Subjects were then divided into 27 groups (ie, 33) by the tertiles of TGs, TC, and HDLC. The number of events observed in each group was compared with that predicted by a logistic regression model, which included terms for the 3 lipids (without interactions) and potential confounding variables. The incidence of IHD was 22.6% in the group with the lipid risk factor combination with the highest expected risk (high TGs, high TC, and low HDLC) and 4.7% in the group with the lowest expected risk (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Elevated plasma homocysteine level has been associated with increased risk for cardiovascular and cerebrovascular disease. Variation in the levels of this amino acid has been shown to be due to nutritional status and methylenetetrahydrofolate reductase (MTHFR) genotype. METHODS: Under a case-control design we compared fasting levels of homocysteine and MTHFR genotypes in groups of subjects consisting of stroke, vascular dementia (VaD), and Alzheimer disease patients and normal controls from Northern Ireland. RESULTS: A significant increase in plasma homocysteine was observed in all 3 disease groups compared with controls. This remained significant after allowance for confounding factors (age, sex, hypertension, cholesterol, smoking, creatinine, and nutritional measures). MTHFR genotype was not found to influence homocysteine levels, although the T allele was found to increase risk for VaD and perhaps dementia after stroke. CONCLUSIONS: We report that moderately high plasma levels of homocysteine are associated with stroke, VaD, and Alzheimer disease. This is not due to vascular risk factors, nutritional status, or MTHFR genotype

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Somatostatin-14 elicits negative inotropic and chronotropic actions in atrial myocardium. Less is known about the effects of somatostatin-14 in ventricular myocardium. The direct contractile effects of somatostatin-14 were assessed using ventricular cardiomyocytes isolated from the hearts of adult rats. Cells were stimulated at 0.5 Hz with CaCl2 (2 mM) under basal conditions and in the presence of the -adrenoceptor agonist, isoprenaline (1 nM), or the selective inhibitor of the transient outward current (Ito), 4-aminopyridine (500 M). Somatostatin-14 did not alter basal contractile response but it did inhibit (IC50 13 nM) the response to isoprenaline (1 nM). In the presence of 4-aminopyridine (500 M), somatostatin-14 stimulated a positive contractile response (EC50 118 fM) that was attenuated markedly by diltiazem (100 nM). These data indicate that somatostatin-14 exerts dual effects directly in rat ventricular cardiomyocytes: (1) a negative contractile effect, observed in the presence of isoprenaline (1 nM), coupled to activation of Ito; and (2) a previously unreported and very potent positive contractile effect, unmasked by 4-aminopyridine (500 M), coupled to the influx of calcium ions via L-type calcium channels. The greater potency of somatostatin-14 for producing the positive contractile effect indicates that the peptide may exert a predominantly stimulatory influence on the resting contractility of ventricular myocardium in vivo, whereas the negative contractile effect, observed at much higher concentrations, could indicate that localized elevations in the concentration of the peptide may serve as a negative regulatory influence to limit the detrimental effects of excessive stimulation of cardiomyocyte contractility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity is a low grade inflammatory state associated with premature cardiovascular morbidity and mortality. Along with traditional risk factors the measurement of endothelial function, insulin resistance, inflammation and arterial stiffness may contribute to the assessment of cardiovascular risk. We conducted a randomised placebo controlled trial to assess the effects of 12 weeks treatment with a PPAR-alpha agonist (fenofibrate) and a PPAR-gamma agonist (pioglitazone) on these parameters in obese glucose tolerant men. Arterial stiffness was measured using augmentation index and pulse wave velocity (PWV). E-selectin, VCAM-1 and ICAM-1 were used as markers of endothelial function. Insulin sensitivity improved with pioglitazone treatment (p=0.001) and, in keeping with this, adiponectin increased by 85.2% (p