979 resultados para Carboxylic acids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background – Satiation and satiety describe the events which lead to meal termination and the maintenance of hunger induced by physical and metabolic events following food ingestion. Fatty acids, components of dietary fat (triglyceride) may be important, if not essential components of satiation and satiety. Emerging evidence suggests fatty acid now constitutes a sixth taste modality and orally sensed fatty acids mediate unique cephalic and hormonal responses priming the body for fat digestion, and may contribute to sensory specific satiety. Once ingested, fatty acids are sensed in the gastrointestinal tract (GIT) where they cause the release of hormones, stimulate the vagus and enter the blood stream where they act a number of organs (brain, liver) to influence satiety.
Objective – To review the role of fatty acids in sensory and metabolic satiation and satiety.
Design – Literature search and review of papers from the past decade on satiety, satiation, fat taste and fatty acids.
Outcomes – The physiological significance of gustatory fat detection is still unclear, but it may signal the nutritious content of fat similar to the tastes of sweet or umami which signal the presence of carbohydrate or proteins. Like other tastants, fatty acid taste sensitivity is thought to vary in the population and differences in sensitivity may influence dietary choice and fat intake. Fatty acid taste may contribute to sensory specific satiety as foods are eaten. Animal models have observed an inverse relationship between oral fatty acid sensitivity and fat consumption, which leads to obesity. Observations that the obese have heightened preferences for, and consume more fat than lean individuals questions whether such a relationship may also be apparent in humans. At the GIT, fatty acids are sensed by enterocytes and bind to receptors, transporters or ion channels where they initiate gut-brain communication over nutrient status through the vagus and cause the release of satiety hormones which lead to meal termination. Inefficient fatty acid sensing at either or both locations is thought to accompany the aetiology of obesity.
Conclusion – Variations in sensitivity to fatty acids may alter preferences and consumption of fats or hormonal responses to fat ingestion which influence sensory-specific, metabolic and subjective satiety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existence of gender differences in cardiovascular disease (CVD) following long-chain omega-3 polyunsaturated fatty acid (LCn-3 PUFA) supplementation have suggested that sex hormones play a role in cardio-protection. The objective of this study was to determine gender specific responses in the efficacy of LCn-3 PUFA to inhibit platelet aggregation in vitro. Blood was analyzed for collagen-induced platelet aggregation following pre-incubation with LCn-3 PUFA in healthy adults (n=42). Eicosapentaenoic acid (EPA) was significantly more effective in reducing platelet aggregation compared with docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). When grouped by gender, this differential pattern was followed in males only. In females, DHA, DPA and EPA were all equally effective. Between group analyses (LCn-3 PUFA vs. gender) showed that both DHA and DPA were significantly less effective in males compared with females. EPA was equally effective in reducing platelet aggregation in both groups. These findings show that significant gender differences exist in platelet aggregation in response to various LCn-3 PUFA treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish consumption during gestation can provide the fetus with long-chain polyunsaturated fatty acids (LCPUFA) and other nutrients essential for growth and development of the brain. However, fish consumption also exposes the fetus to the neurotoxicant, methyl mercury (MeHg). We studied the association between these fetal exposures and early child development in the Seychelles Child Development Nutrition Study (SCDNS). Specifically, we examined a priori models of Ω-3 and Ω-6 LCPUFA measures in maternal serum to test the hypothesis that these LCPUFA families before or after adjusting for prenatal MeHg exposure would reveal associations with child development assessed by the BSID-II at ages 9 and 30 months. There were 229 children with complete outcome and covariate data available for analysis. At 9 months, the PDI was positively associated with total Ω-3 LCPUFA and negatively associated with the ratio of Ω-6/Ω-3 LCPUFA. These associations were stronger in models adjusted for prenatal MeHg exposure. Secondary models suggested that the MeHg effect at 9 months varied by the ratio of Ω-6/Ω-3 LCPUFA. There were no significant associations between LCPUFA measures and the PDI at 30 months. There were significant adverse associations, however, between prenatal MeHg and the 30-month PDI when the LCPUFA measures were included in the regression analysis. The BSID-II mental developmental index (MDI) was not associated with any exposure variable. These data support the potential importance to child development of prenatal availability of Ω-3 LCPUFA present in fish and of LCPUFA in the overall diet. Furthermore, they indicate that the beneficial effects of LCPUFA can obscure the determination of adverse effects of prenatal MeHg exposure in longitudinal observational studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blood levels of polyunsaturated fatty acids (PUFA) are considered biomarkers of status. Alpha-linolenic acid, ALA, the plant omega-3, is the dietary precursor for the long-chain omega-3 PUFA eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Studies in normal healthy adults consuming western diets, which are rich in linoleic acid (LA), show that supplemental ALA raises EPA and DPA status in the blood and in breast milk. However, ALA or EPA dietary supplements have little effect on blood or breast milk DHA levels, whereas consumption of preformed DHA is effective in raising blood DHA levels. Addition of ALA to the diets of formula-fed infants does raise DHA, but no level of ALA tested raises DHA to levels achievable with preformed DHA at intakes similar to typical human milk DHA supply. The DHA status of infants and adults consuming preformed DHA in their diets is, on average, greater than that of people who do not consume DHA. With no other changes in diet, improvement of blood DHA status can be achieved with dietary supplements of preformed DHA, but not with supplementation of ALA, EPA, or other precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to provide an alternative to traditional liquid fish oil gelatin capsules, we developed a solid, powdered form of omega-3 fish oil concentrate by forming calcium- and magnesium-fatty acid salts. These salts were produced using a concentrated fish oil ethyl ester that contained in excess of 60% omega-3 fatty acids. The bioavailability of these omega-3 salts was compared with that of fish oil ethyl ester in mice. Animals were given 8 mg of omega-3 fatty acid ethyl ester concentrate (control), calcium- or magnesium-omega-3 salts daily for three weeks. The omega-3 salt products resulted in omega-3 fatty acid content in serum and red blood cell membranes comparable to that produced by the ethyl ester supplementation. In addition, fecal excretion of omega-3 fatty acids was not increased by the presence of calcium or magnesium. In fact, there was a tendency for less omega-3 fatty acids to be excreted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Exposure to n-3 polyunsaturated fatty acids (PUFA) in early life is hypothesized to offer protection against atopic disease. However, there is controversy in this area, and we have previously observed that high levels of n-3 fatty acid (FA) in colostrum are associated with increased risk of allergic sensitization.
Objective The aim of the study was to assess the relationship between FA profile in breast milk and risk of childhood atopic disease.
Methods A high-risk birth cohort was recruited, and a total of 224 mothers provided a sample of colostrum (n = 194) and/or 3-month expressed breast milk (n = 118). FA concentrations were determined by gas chromatography. Presence of eczema, asthma and rhinitis were prospectively documented up to 7 years of age.
Results High levels of n-3 22:5 FA (docosapentaenoic acid, DPA) in colostrum were associated with increased risk of infantile atopic eczema [odds ratio (OR) = 1.66 per 1 standard deviation increase, 95% confidence interval (CI) = 1.11–2.48], while total n-3 concentration in breast milk was associated with increased risk of non-atopic eczema (OR = 1.60, 95% CI = 1.03–2.50). Higher levels of total n-6 FA in colostrum were associated with increased risk of childhood rhinitis (OR = 1.59, 95% CI = 1.12–2.25). There was no evidence of associations between FA profile and risk of asthma.
Conclusion In this cohort of high-risk children, a number of modest associations were observed between FA concentrations in colostrum and breast milk and allergic disease outcomes. Further research in this area with larger sample sizes is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary polyunsaturated fatty acids (PUFA) play a key role in regulating delta-6 desaturase (D6D), the key enzyme for long-chain PUFA biosynthesis. Nevertheless, the extent of their effects on this enzyme remains controversial and difficult to assess. It has been generally admitted that C18 unsaturated fatty acids (UFAs) regulate negatively delta-6 desaturase (D6D). This inhibition has been evidenced in regard to a high glucose/fat free (HG/FF) diet used in reference. However, several nutritional investigations did not evidence any inhibition of desaturases when feeding fatty acids.

Because the choice of the basal diet appeared to be of primary importance in such experiments, our goal was to reconsider the specific role of dietary UFAs on D6D regulation, depending on nutritional conditions. For that, sixteen adult Wistar rats were fed purified linoleic acid, α-linolenic acid or oleic acid, included in one of two diets at 4% by weight: an HG/FF or a high starch base (HS) where the pure UFAs replaced a mixed vegetable oil. Our results showed first that D6D specific activity was significantly greater when measured in presence of an HG/FF than with an HS/4% vegetable oil diet. Secondly, we found that linoleic and alpha-linolenic acids added to HG/FF reduced the specific activity of D6D. In contrast, when pure UFAs were added to an HS base, D6D specific activities remained unchanged or increased. Concordant results were obtained on D6D mRNA expression.

Altogether, this study evidenced the importance of the nutritional status in D6D regulation by C18 UFAs: when used as control, HG/FF diet stimulates D6D compared with a standard control diet containing starch and 4% fats, leading to an overestimation of the D6D regulation by UFAs. Then, UFAs should be considered as repressors for unsaturated fatty acid biosynthesis only in very specific nutritional conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major polyunsaturated fatty acid (PUFA) in the western diet is linoleic acid (LA), which is considered to be the major source of tissue arachidonic acid (AA), the principal precursor for the vaso-active eicosanoids via the cyclooxygenase enzymatic pathway. However, dietary AA may contribute significantly to tissue levels of AA in humans, leading to an increase in the production of eicosanoids, particularly the platelet aggregating, vasoconstricting, thromboxane (TXA2), hence increasing thrombosis risk. The aims of this study were to determine the extent to which dietary AA contributed to prostacyclin (PGI2) and TXA2 production in vivo and whether dietary long chain (LC) n-3 PUFA have a modulating influence on the metabolism of AA to these vaso-active eicosanoids. A gas chromatography -mass spectrometry (GCMS) method for urinary PGI2-M determination and a tandem GCMS/MS method for urinary TXA2-M determination were perfected for use within our laboratory (with the assistance of Dr Howard Knapp, University of Iowa and Professor Reinhard Lorenz, Ludwig Maximilian's University, Munich, respectively). An initial animal study compared the in vitro production of PGI2 by aorta segments with the whole body in vivo production of PGI2 in rats fed ethyl arachidonate or the ethyl ester of eicosapentaenoic acid (EPA), at levels many times higher than encountered in human diets. During AA feeding both measures of PGI2 increased, although in vitro TXA2 production was not affected. EPA feeding lowered in vitro TXA2 and in vivo PGI2. Prior to determining the effects of AA and LC n-3 PUFA in humans, a study was carried out to determine the AA and LC n-3 PUFA content of foods and from these, an estimate of the mean daily intake of AA and other LC PUFA. Eggs, organ meats and paté were found to be the richest sources of AA. Of the meat and fish analysed, white meat was found to be relatively rich in AA but poor in LC n-3 PUFA. Lean red meat, particularly kangaroo had similar LC n-3 PUFA and AA content. Fish, although rich in AA, had extremely high levels of LC n-3 PUFA. The calculated mean daily intakes of AA in Australian adults was 130mg (males) and 96mg (females). For total LC n-3 PUFA intake, the mean daily values were 247mg (males) and 197mg (females). Two human pilot studies involving dietary intervention trials examined the effects of dietary AA and AA plus long chain n-3 PUFA on thrombosis risk, gauged by the change in the ratio of PGI2 / TXA2 as well as alterations to other recognised risk factors, such as lipoprotein lipids and platelet aggregation. The desired dietary amounts of AA and LC n-3 PUFA were achieved in the first study by combining food items with known levels of each fatty acid. In the second study, where a diet with approximately equal quantities of AA and LC n-3 PUFA was being examined, kangaroo meat was consumed, following a low-fat vegetarian diet used as a baseline. Diets rich in AA alone (~500mg/day) increased plasma phospholipid (PL) AA levels, PGIi and TXA2 production. When foods containing equal quantities of AA and EPA (∼500mg/day of each) were fed to subjects PGI2 increased, with no change in TXAs production. Low fat vegetarian diets lowered PGI2 production, the level of which was reestablished by an AA rich diet (∼300mg AA/day + ∼260mg/day LC n-3 PUFA) of kangaroo meat. However, TXA2 production was not altered. A final, larger human dietary intervention trial then examined the effects of diets relatively rich in AA alone, AA plus LC n-3 PUFA and LC n-3 PUFA, on the ratio of PGI2/TXA2- The dietary sources of these fatty acids were white meat, red meat and fish, respectively. Each contained a mean level of AA of ∼140mg/day, with varying LC n-3 PUFA levels (59, 161 and 3380mg/day, respectively). Neither meat diet altered PGI2 or TXA2 production significantly, despite increasing serum PL AA levels. The fish diet resulted in a decrease in the serum and platelet PL AA/EPA ratio and TXA2 production, thus increasing the PGI2 / TXA2 ratio. These results would indicate that stores of AA in the body are sufficiently high to have effectively saturated the cyclooxygenase pathway for production of both PGI2 and TXA2, thus making any small change in the plasma level of AA due to 'normal' dietary levels, inconsequential. However, as seen in the rat study and the two pilot studies higher dietary levels of AA can increase both PGI2 and TXA2 production. Increases in platelet levels of EPA and DHA were associated with a decrease in TXA2 production, or the maintenance of a constant TXA2 level, while AA tissue levels and PGI2 production increased. This suggests a possible inhibitory effect of LC n-3 PUFA on the metabolism of AA to TXA2, particularly in platelets. From these short term studies, conducted over 2-3 week periods, it can be concluded that diets rich in lean meats can raise plasma AA levels but do not affect TXA2 or PGI2 production, hence are not pro-thrombotic. Diets rich in long chain n-3 PUFA from fish, raise plasma EPA and DHA levels, lower TXA2 production and are anti-thrombotic. Diets which combine equal quantities of AA and LC n-3 PUFA appear to increase PGI2 production while keeping TXA2 production constant. In order for these LC PUFA to have a significant effect on eicosanoid production the dietary intake of these fatty acids through foods such as red meat or white meat would have to be higher than average current Australian consumption levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1,3 dipolar cycloaddition between carbonyl ylids (generated from cyclobutene epoxides flanked by esters) and norbornyl alkenes – the ACE reaction – offers a facile method for the construction of polynorbornyl molecular frameworks. This reaction has, as described in this dissertation, underpinned the construction of molecular frameworks that have peptides and amino acids attached. Such highly rigid peptide-frameworks are of use in the field of peptidomimetics; the template molecule governs the final positioning of any attached groups such that a precise arrangement of amino acids can be achieved without the need to construct entire proteins. In the course of any ACE reaction the ester flanked cyclobutene epoxide is transformed to a 1,3 dipole, the esters serve to stablise this reactive intermediate and are as a consequence incorporated in the reaction product. Modification of these esters provides pseudo-equatorial points for peptide attachment. These methyl esters were replaced with tert-butyl esters to provide pseudo-axial attachment points that could be selectively addressed. The optimal strategy for peptide-framework construction involved direct condensation of carboxyl protected amino acids to bicyclo[2.2.1]hept-5-ene-2-endo-carboxylic acid as well as condensation of amino acids to cyclobutene epoxides derived from this acid. The ACE reaction of (±) bicycloheptene-2-endo-carboxylic acid derivatives with cyclobutene epoxides synthesised from such racemic acid derivatives provided a mixture of enantiomers and meso compounds. In order to control the position of the attachment points – and hence the final location of the attached peptides – the ACE reaction required chiral starting materials. Accordingly, all peptidoframeworks were derived from the chiral (2S)-(-)-bicycloheptene carboxylic acid. The ACE reaction of this (S)-norbornene with the (S)-epoxide provided a peptide framework in which the attached amino acids were positioned pseudo-axially. Deprotection of the amino acid allowed peptide chain building in the pseudo-axial direction. Using this strategy a framework with an alanine residue and a triglycine peptide was synthesised. By combining this strategy with the ter-butyl ester variant a framework with pseudo-axial alanine and pseudo-equatorial glycine residues was manufactured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disclosed are methods of making salts of fatty acids (e.g., marine oils) and to salts prepared by the disclosed methods. Methods of using the disclosed salts are also disclosed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation into humic acid; chemistry examined the effect the extraction technique used to isolate humic material from the sediment had on the chemical/structural composition and yield of the acid; compared the various isolation techniques used in the literature and developed an extraction technique which minimises the solubilisation of the heavy metals from the inorganic sediment and, examined the complexation capacity of humic acids derived from a sediment source in relation to the heavy metal content and extraction technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work examined the effects of a novel dairy fatty acid conjugated linoleic acid (CLA) and its effects on muscle wasting in advanced cancer. Results showed a positive anti-inflammatory role of CLA on the supression of tumour growth and established a model for studying the action of CLA in human muscle-wasting conditions.

Relevância:

20.00% 20.00%

Publicador: