987 resultados para Capillary electophoresis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for studying of the surface wave in the thermal capillary convection in a rectangular cavity. In this paper, the capillary convection, surface deformation and surface wave due to the different temperature between the two sidewalls have been investigated. The cavity is 52mm?42mm in horizontal cross section and 4mm in height. The temperature difference is increased gradually and flow in liquid layer will change from steady convection to unstable convection. The optical interference method measures the surface deformation and the surface wave of the convection. The deformation of the interference fringes, which produced by the meeting of the reflected light from the liquid surface and the reference light has been captured, and the surface deformation appears when the steady convection is developed. The surface deformation is enhanced with the increasing of the temperature difference, and then several knaggy peeks in the interference fringes appear and move from the heated side to the cooled side, it demonstrates that the surface wave is existed. The surface deformation, the wavelength, the frequency, and the wave amplitude of the surface wave have been calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models describing wet adhesion between indenters and substrates joined by liquid bridges are investigated. The influences of indenter shapes and various parameters of structures on capillary force are focused. In the former, we consider several shapes, such as conical, spherical and truncated conical indenter with a spherical end. In the latter, the effects of the contact angle, the environmental humidity, the gap between the indenter and the substrate, etc. are included. Different dependences of the capillary force on the indenter shapes and the geometric parameters are observed. Most interesting finding is that applying the present results to micro- and nano-indentation experiments shows the size effect in indentation hardness not produced but underestimated by the effects of capillary force.(4 refs)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The static and dynamic instabilities of a torsional MEMS/NEMS actuator caused by capillary effects are studied, respectively. An instability number, eta, is defined, and the critical gap distance, g(cr), between the mainplate and the substrate is derived. According to the values of eta and g, the instability criteria of the actuator are presented. The dimensionless motion equation of the MEMS/NEMS torsional actuator is derived when it makes nonlinear oscillation under capillary force. The qualitative analysis of the nonlinear equation is made, and the phase portraits are presented on the phase plane. In addition, the bifurcation phenomena in the system are also analyzed. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new dual simultaneous detector was developed for capillary electrophoresis microchip. Confocal laser-induced fluorescence (LIF) and moveable contactless conductivity detection (MCCD) were combined together for the first time. The two detection systems shared a common detection cell and could respond simultaneously. They were mutually independent and advantageous in analyses of mixtures containing organic and inorganic ions. The confocal LIF had high sensitivity and the MCCD could move along the separation channel and detect in different positions of the channel. The detection conditions of the dual detector were optimized. Rhodamine B was used to evaluate the performance of the dual detector. The limit of detection of the confocal LIF was < 5 nM, and that of the MCCD was 0.1 mu M. The dual detector had highly sensitivity and could offer response easily, rapidly and simultaneously. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of contact angle and tube radius on the capillary-driven flow for circular cylindrical tubes is studied systematically by microgravity experiments using the drop tower. Experimental results show that the velocity of the capillary flow decreases monotonically with an increase in the contact angle. However, the time-evolution of the velocity of the capillary flow is different for different sized tubes. At the beginning of the microgravity period, the capillary flow in a thinner tube moves faster than that in a thicker tube, and then the latter overtakes the former. Therefore, there is an intersection between the curves of meniscus velocity vs microgravity time for two differently sized tubes. In addition, for two given sized tubes this intersection is delayed when the contact angle increases. The experimental results are analyzed theoretically and also supported by numerical computations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of capillary-gravity waves of permanent form on deep water are studied. Two different formulations to the problem are given. The theory of simple bifurcation is reviewed. For small amplitude waves a formal perturbation series is used. The Wilton ripple phenomenon is reexamined and shown to be associated with a bifurcation in which a wave of permanent form can double its period. It is shown further that Wilton's ripples are a special case of a more general phenomenon in which bifurcation into subharmonics and factorial higher harmonics can occur. Numerical procedures for the calculation of waves of finite amplitude are developed. Bifurcation and limit lines are calculated. Pure and combination waves are continued to maximum amplitude. It is found that the height is limited in all cases by the surface enclosing one or more bubbles. Results for the shape of gravity waves are obtained by solving an integra-differential equation. It is found that the family of solutions giving the waveheight or equivalent parameter has bifurcation points. Two bifurcation points and the branches emanating from them are found specifically, corresponding to a doubling and tripling of the wavelength. Solutions on the new branches are calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elastocapillary self-assembly is emerging as a versatile technique to manufacture three-dimensional (3D) microstructures and complex surface textures from arrangements of micro- and nanoscale filaments. Understanding the mechanics of capillary self-assembly is essential to engineering of properties such as shape-directed actuation, anisotropic wetting and adhesion, and mechanical energy transfer and dissipation. We study elastocapillary self-assembly (herein called "capillary forming") of carbon nanotube (CNT) microstructures, combining in situ optical imaging, micromechanical testing, and finite element modeling. By imaging, we identify sequential stages of liquid infiltration, evaporation, and solid shrinkage, whose kinetics relate to the size and shape of the CNT microstructure. We couple these observations with measurements of the orthotropic elastic moduli of CNT forests to understand how the dynamic of shrinkage of the vapor-liquid interface is coupled to the compression of the forest. We compare the kinetics of shrinkage to the rate of evporation from liquid droplets having the same size and geometry. Moreover, we show that the amount of shrinkage during evaporation is governed by the ability of the CNTs to slip against one another, which can be manipulated by the deposition of thin conformal coatings on the CNTs by atomic layer deposition (ALD). This insight is confirmed by finite element modeling of pairs of CNTs as corrugated beams in contact and highlights the coupled role of elasticity and friction in shrinkage and stability of nanoporous solids. Overall, this study shows that nanoscale porosity can be tailored via the filament density and adhesion at contact points, which is important to the development of lightweight multifunctional materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a scalable process for the fabrication of slanted carbon nanotube micropillar arrays by inclined metal deposition and capillary self-assembly. Local control of the micropillar angle from vertical to nearly horizontal is achieved, and is explained using a finite element model. These structures may be useful for microscale contacts and anisotropic smart surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the fabrication of horizontally aligned carbon nanotube (HA-CNT) networks by spatially programmable folding, which is induced by self-directed liquid infiltration of vertical CNTs. Folding is caused by a capillary buckling instability and is predicted by the elastocapillary buckling height, which scales with the wall thickness as t(3/2). The folding direction is controlled by incorporating folding initiators at the ends of the CNT walls, and the initiators cause a tilt during densification which precedes buckling. By patterning these initiators and specifying the wall geometry, we control the dimensions of HA-CNT patches over 2 orders of magnitude and realize multilayered and multidirectional assemblies. Multidirectional HA-CNT patterns are building blocks for custom design of nanotextured surfaces and flexible circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new technology called capillary forming enables transformation of vertically aligned nanoscale filaments into complex three-dimensional microarchitectures. We demonstrate capillary forming of carbon nanotubes into diverse forms having intricate bends, twists, and multidirectional textures. In addition to their novel geometries, these structures have mechanical stiffness exceeding that of microfabrication polymers, and can be used as masters for replica molding

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1,4,10,13,16-Pentaazatricycloheneicosane-9,17-dione (macrocyclic polyamine)-modified polymer-based monolithic column for CEC was prepared by ring opening reaction of epoxide groups from poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolith with macrocyclic polyamine. Conditions such as reaction time and concentration of macrocyclic polyamine for the modification reaction were optimized to generate substantial EOF and enough chromatographic interactions. Anodic EOF was observed in the pH range of 2.0-8.0 studied due to the protonation of macrcyclic polyamine at the surface of the monolith. Morphology of the monolithic column was examined by SEM and the incorporation of macrocyclic polyamine to the poly(GMA-co-EDMA) monolith was characterized by infrared (IR) spectra. Successful separation of inorganic anions, isomeric benzenediols, and benzoic acid derivatives on the monolithic column was achieved for CEC. In addition to hydrophobic interaction, hydrogen bonding and electrostatic interaction played a significant role in the separation process.