320 resultados para COMT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catechol-O-methyl transferase (COMT) encodes an enzyme involved in the metabolism of dopamine and maps to a commonly deleted region that increases schizophrenia risk. A non-synonymous polymorphism (rs4680) in COMT has been previously found to be associated with schizophrenia and results in altered activity levels of COMT. Using a haplotype block-based gene-tagging approach we conducted an association study of seven COMT single nucleotide polymorphisms (SNPs) in 160 patients with a DSM-IV diagnosis of schizophrenia and 250 controls in an Australian population. Two polymorphisms including rs4680 and rs165774 were found to be significantly associated with schizophrenia. The rs4680 results in a Val/Met substitution but the strongest association was shown by the novel SNP, rs165774, which may still be functional even though it is located in intron five. Individuals with schizophrenia were more than twice as likely to carry the GG genotype compared to the AA genotype for both the rs165774 and rs4680 SNPs. This association was slightly improved when males were analysed separately possibly indicating a degree of sexual dimorphism. Our results confirm that COMT is a good candidate for schizophrenia risk, by replicating the association with rs4680 and identifying a novel SNP association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background It is well established that COMT is a strong candidate gene for substance use disorder and schizophrenia. Recently we identified two SNPs in COMT (rs4680 and rs165774) that are associated with schizophrenia in an Australian cohort. Individuals with schizophrenia were more than twice as likely to carry the GG genotype compared to the AA genotype for both the rs165774 and rs4680 SNPs. Association of both rs4680 and rs165774 with substance dependence, a common comorbidity of schizophrenia has not been investigated. Methods To determine whether COMT is important in substance dependence, rs165774 and rs4680 were genotyped and haplotyped in patients with nicotine, alcohol and opiate dependence. Results The rs165774 SNP was associated with alcohol dependence. However, it was not associated with nicotine or opiate dependence. Individuals with alcohol dependence were more than twice as likely to carry the GG or AG genotypes compared to the AA genotype, indicating a dominant mode of inheritance. The rs4680 SNP showed a weak association with alcohol dependence at the allele level that did not reach significance at the genotype level but it was not associated with nicotine or opiate dependence. Analysis of rs165774/rs4680 haplotypes also revealed association with alcohol dependence with the G/G haplotype being almost 1.5 times more common in alcohol-dependent cases. Conclusions Our study provides further support for the importance of the COMT in alcohol dependence in addition to schizophrenia. It is possible that the rs165774 SNP, in combination with rs4680, results in a common molecular variant of COMT that contributes to schizophrenia and alcohol dependence susceptibility. This is potentially important for future studies of comorbidity. As our participant numbers are limited our observations should be viewed with caution until they are independently replicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic neurological disease characterized by central nervous system (CNS) inflammation and demyelination. The C677T substitution variant in the methylenetetrahydrofolate reductase (MTHFR) gene has been associated with increased levels of circulating homocysteine and is a mild risk factor for vascular disease. Higher blood levels of homocysteine have also been reported in MS. Thus, the C677T mutation of the MTHFR gene may influence MS susceptibility. Noradrenaline, a neurotransmitter believed to play an immunosupressive role in neuroinflammatory disorders, is catabolized by catechol-O-methyl transferase (COMT). The COMT G158A substitution results in a three- to four-fold decreased activity of the COMT enzyme, which may influence CNS synaptic catecholamine breakdown and could also play a role in MS inflammation. We tested DNA from Australian MS patients and unaffected control subjects, matched for gender, age and ethnicity. Specifically, we genotyped the MTHFR C677T and the COMT G158A mutations. Genotype distributions showed that the homozygous mutant MTHFR genotype (T/T) and the COMT (H/H) genotype were slightly over-represented in the MS group (16% versus 11% and 24% versus 19%, respectively), but both variations failed to reach statistical significance (P=0.15 and P=0.32, respectively). Hence, results from the present study do not support a major role for either functional gene mutation in MS susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of midbrain dopamine systems is thought to be critically involved in the addictive properties of abused substances. Drugs of abuse increase dopamine release in the nucleus accumbens and dorsal striatum, which are the target areas of mesolimbic and nigrostriatal dopamine pathways, respectively. Dopamine release in the nucleus accumbens is thought to mediate the attribution of incentive salience to rewards, and dorsal striatal dopamine release is involved in habit formation. In addition, changes in the function of prefrontal cortex (PFC), the target area of mesocortical dopamine pathway, may skew information processing and memory formation such that the addict pays an abnormal amount of attention to drug-related cues. In this study, we wanted to explore how long-term forced oral nicotine exposure or the lack of catechol-O-methyltransferase (COMT), one of the dopamine metabolizing enzymes, would affect the functioning of these pathways. We also wanted to find out how the forced nicotine exposure or the lack of COMT would affect the consumption of nicotine, alcohol, or cocaine. First, we studied the effect of forced chronic nicotine exposure on the sensitivity of dopamine D2-like autoreceptors in microdialysis and locomotor activity experiments. We found that the sensitivity of these receptors was unchanged after forced oral nicotine exposure, although an increase in the sensitivity was observed in mice treated with intermittent nicotine injections twice daily for 10 days. Thus, the effect of nicotine treatment on dopamine autoreceptor sensitivity depends on the route, frequency, and time course of drug administration. Second, we investigated whether the forced oral nicotine exposure would affect the reinforcing properties of nicotine injections. The chronic nicotine exposure did not significantly affect the development of conditioned place preference to nicotine. In the intravenous self-administration paradigm, however, the nicotine-exposed animals self-administered nicotine at a lower unit dose than the control animals, indicating that their sensitivity to the reinforcing effects of nicotine was enhanced. Next, we wanted to study whether the Comt gene knock-out animals would be a suitable model to study alcohol and cocaine consumption or addiction. Although previous work had shown male Comt knock-out mice to be less sensitive to the locomotor-activating effects of cocaine, the present study found that the lack of COMT did not affect the consumption of cocaine solutions or the development of cocaine-induced place preference. However, the present work did find that male Comt knock-out mice, but not female knock-out mice, consumed ethanol more avidly than their wild-type littermates. This finding suggests that COMT may be one of the factors, albeit not a primary one, contributing to the risk of alcoholism. Last, we explored the effect of COMT deficiency on dorsal striatal, accumbal, and prefrontal cortical dopamine metabolism under no-net-flux conditions and under levodopa load in freely-moving mice. The lack of COMT did not affect the extracellular dopamine concentrations under baseline conditions in any of the brain areas studied. In the prefrontal cortex, the dopamine levels remained high for a prolonged time after levodopa treatment in male, but not female, Comt knock-out mice. COMT deficiency induced accumulation of 3,4-dihydroxyphenylacetic acid, which increased further under levodopa load. Homovanillic acid was not detectable in Comt knock-out animals either under baseline conditions or after levodopa treatment. Taken together, the present results show that although forced chronic oral nicotine exposure affects the reinforcing properties of self-administered nicotine, it is not an addiction model itself. COMT seems to play a minor role in dopamine metabolism and in the development of addiction under baseline conditions, indicating that dopamine function in the brain is well-protected from perturbation. However, the role of COMT becomes more important when the dopaminergic system is challenged, such as by pharmacological manipulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catechol-O-methyltransferase (COMT) metabolizes catecholamines such as dopamine (DA), noradrenaline (NA) and adrenaline, which are vital neurotransmitters and hormones that play important roles in the regulation of physiological processes. COMT enzyme has a functional Val158Met polymorphism in humans, which affects the subjects COMT activity. Increasing evidence suggests that this functional polymorphism may play a role in the etiology of various diseases from schizophrenia to cancers. The aim of this project was to provide novel biochemical information on the physiological and especially pathophysiological roles of COMT enzyme as well as the effects of COMT inhibition in the brain and in the cardiovascular and renal system. To assess the roles of COMT and COMT inhibition in pathophysiology, we used four different study designs. The possible beneficial effects of COMT inhibition were studied in double-transgenic rats (dTGRs) harbouring human angiotensinogen and renin genes. Due to angiotensin II (Ang II) overexpression, these animals exhibit severe hypetension, cardiovascular and renal end-organ damage and mortality of approximately 25-40% at the age of 7-weeks. The dTGRs and their Sprague-Dawley controls tissue samples were assessed with light microscopy, immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and high-pressure liquid chromatography (HPLC) to evaluate the tissue damages and the possible protective effects pharmacological intervention with COMT inhibitors. In a second study, the consequence of genetic and pharmacological COMT blockade in blood pressure regulation during normal and high-sodium was elucidated using COMT-deficient mice. The blood pressure and the heart rate were measured using direct radiotelemetric blood pressure surveillance. In a third study, the effects of acute and subchronic COMT inhibition during combined levodopa (L-DOPA) + dopa decarboxylase inhibitor treatment in homocysteine formation was evaluated. Finally, we assessed the COMT enzyme expression, activity and cellular localization in the CNS during inflammation-induced neurodegeneration using Western blotting, HPLC and various enzymatic assays. The effects of pharmacological COMT inhibition on neurodegeneration were also studied. The COMT inhibitor entacapone protected against the Ang II-induced perivascular inflammation, renal damage and cardiovascular mortality in dTGRs. COMT inhibitors reduced the albuminuria by 85% and prevented the cardiovascular mortality completely. Entacapone treatment was shown to ameliorate oxidative stress and inflammation. Furthermore, we established that the genetic and pharmacological COMT enzyme blockade protects against the blood pressure-elevating effects of high sodium intake in mice. These effects were mediated via enhanced renal dopaminergic tone and suggest an important role of COMT enzyme, especially in salt-sensitive hypertension. Entacapone also ameliorated the L-DOPA-induced hyperhomocysteinemia in rats. This is important, since decreased homocysteine levels may decrease the risk of cardiovascular diseases in Parkinson´s disease (PD) patients using L-DOPA. The Lipopolysaccharide (LPS)-induced inflammation and subsequent delayed dopaminergic neurodegeneration were accompanied by up-regulation of COMT expression and activity in microglial cells as well as in perivascular cells. Interestingly, similar perivascular up-regulation of COMT expression in inflamed renal tissue was previously noted in dTGRs. These results suggest that inflammation reactions may up-regulate COMT expression. Furthermore, this increased glial and perivascular COMT activity in the central nervous system (CNS) may decrease the bioavailability of L-DOPA and be related to the motor fluctuation noted during L-DOPA therapy in PD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several lines of evidence have implicated the catechol-O-methyltransferase (COMT) gene as a candidate for schizophrenia (SZ) susceptibility, not only because it encodes a key dopamine catabolic enzyme but also because it maps to the velocardiofacial syndrome region of chromosome 22q11 which has long been associated with SZ predisposition. The interest in COMT as a candidate SZ risk factor has led to numerous case-control and family-based studies, with the majority placing emphasis on examining a functional Val/Met polymorphism within this enzyme. Unfortunately, these studies have continually produced conflicting results. To assess the genetic contribution of other COMT variants to SZ susceptibility, we investigated three single-nucleotide polymorphisms (SNPs) (rs737865, rs4633, rs165599) in addition to the Val/Met variant (rs4680) in a highly selected sample of Australian Caucasian families containing 107 patients with SZ. The Val/Met and rs4633 variants showed nominally significant associations with SZ (P<0.05), although neither of the individual SNPs remained significant after adjusting for multiple testing (most significant P=0.1174). However, haplotype analyses showed strong evidence of an association; the most significant being the three-marker haplotype rs737865-rs4680-rs165599 (global P=0.0022), which spans more than 26 kb. Importantly, conditional analyses indicated the presence of two separate and interacting effects within this haplotype, irrespective of gender. In addition, our results indicate the Val/Met polymorphism is not disease-causing and is simply in strong linkage disequilibrium with a causative effect, which interacts with another as yet unidentified variant approximately 20 kb away. These results may help explain the inconsistent results reported on the Val/Met polymorphism and have important implications for future investigations into the role of COMT in SZ susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prefrontal cortex (PFC), located in the anterior region of the frontal lobe, is considered to have several key roles in higher cognitive and executive functions. In general, the PFC can be seen as a coordinator of thought and action allowing subjects to behave in a goal-directed manner. Due to its anatomical connections with a variety of cortical and subcortical structures, several neurotransmitters, including dopamine, are involved in the regulation of PFC activity. In general, the majority of released dopamine is cleared by the dopamine transporter (DAT). In the PFC however, the number of presynaptic DAT is diminished, emphasizing the relative importance of catechol-O-methyltransferase (COMT) in dopamine metabolism. As a result, the role of COMT in the etiology of psychotic disorders is under constant debate. The present study investigated the role of COMT in prefrontal cortical dopamine metabolism by different neurochemical methods in COMT knockout (COMT-KO) mice. Pharmacological tools to inhibit other dopamine clearing mechanisms were also used for a more comprehensive and collective picture. In addition, this study investigated how a lack of the soluble (S-) COMT isoform affects the total COMT activity as well as the pharmacokinetics of orally administered L-dopa using mutant mice expressing only the membrane-bound (MB-) COMT isoform. Also the role of COMT in striatal and accumbal dopamine turnover during Δ9-tetrahydrocannabinol (THC) challenge was studied. We found markedly increased basal dopamine concentrations in the PFC, but not the striatum or nucleus accumbens (NAcc), of mice lacking COMT. Pharmacological inhibition of the noradrenaline transporter (NET) and monoamine oxidase (MAO) elevated prefrontal cortical dopamine levels several-fold, whereas inhibition of DAT did not. The lack of COMT doubled the dopamine raising effects of NET and MAO inhibition. No compensatory expression of either DAT or NET was found in the COMT-KO mice. The lack of S-COMT decreased the total COMT activity by 50-70 % and modified dopamine transmission and the pharmacokinetics of exogenous Ldopa in a sex and tissue specific manner. Finally, we found that subsequent tolcapone and THC increased dopamine levels in the NAcc, but not in the striatum. Conclusively, this study presents neurochemical evidence for the important role of COMT in the PFC and shows that COMT is responsible for about half of prefrontal cortical dopamine metabolism. This study also highlights the previously underestimated proportional role of MB-COMT and supports the clinical evidence of a gene x environment interaction between COMT and cannabis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The aim of this study is to examine the influence of the catechol-O-methyltranferase (COMT) gene (polymorphism Val158 Met) as a risk factor for Alzheimer's disease (AD) and mild cognitive impairment of amnesic type (MCI), and its synergistic effect with the apolipoprotein E gene (APOE). A total of 223 MCI patients, 345 AD and 253 healthy controls were analyzed. Clinical criteria and neuropsychological tests were used to establish diagnostic groups. The DNA Bank of the University of the Basque Country (UPV-EHU) (Spain) determined COMT Val158 Met and APOE genotypes using real time polymerase chain reaction (rtPCR) and polymerase chain reaction (PCR), and restriction fragment length polymorphism (RFLPs), respectively. Multinomial logistic regression models were used to determine the risk of AD and MCI. Results: Neither COMT alleles nor genotypes were independent risk factors for AD or MCI. The high activity genotypes (GG and AG) showed a synergistic effect with APOE epsilon 4 allele, increasing the risk of AD (OR = 5.96, 95% CI 2.74-12.94, p < 0.001 and OR = 6.71, 95% CI 3.36-13.41, p < 0.001 respectivily). In AD patients this effect was greater in women. In MCI patients such as synergistic effect was only found between AG and APOE epsilon 4 allele (OR = 3.21 95% CI 1.56-6.63, p = 0.02) and was greater in men (OR = 5.88 95% CI 1.69-20.42, p < 0.01). Conclusion: COMT (Val158 Met) polymorphism is not an independent risk factor for AD or MCI, but shows a synergistic effect with APOE epsilon 4 allele that proves greater in women with AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本论文由两部分组成,一、构建来自小麦的COMT的反义表达载体,转化烟草,研究抑制内源COMT对植物木质素合成及其生长发育的影响;二、利用花粉管通道法,将正义和反义COMT基因转化小麦,获得转基因小麦,从而进一步分析。 一、 反义抑制COMT对植物木质素合成及其生长发育的影响 构建含有小麦的咖啡酸-O-甲基转移酶(COMT)cDNA的反义表达载体, 利用农杆菌法转化烟草。 PCR, PCR-Southern 检测显示目的基因片段成功转入烟草基因组。处于营养生长期的转基因植株表型与对照没有明显差异;而发育成熟的转基因植株的植株矮化,茎部木质素含量与对照差异不大,木质素的组成S/G比下降,部分木质部细胞发生变形。我们还发现转基因烟草种子发芽率提高,移栽2个月的子一代转基因植株光合速率、蒸腾速率有所增强。结果表明通过反义抑制COMT将影响木质素合成,并在不同的发育阶段,影响着植物的生长发育。 二、 利用花粉管通道法获得转基因小麦 将构建好的含有Bar基因的正义和反义COMT表达载体利用花粉管法转化两个小麦品种(H4564和C6001),共获得转基因处理的种子1117颗,重新播种后,发育成苗分别为321株,总成苗率为28.7%。通过除草剂PPT筛选,分别获得PPT抗性植株31株。PCR检测抗性植株,获得PCR检测阳性植株5株,总阳性率为0.45%。阳性植株分别为H4564反义处理株1株,C6001的正义和反义处理株各2株。对小麦的植株高度,分蘖数等生理性状的分析发现,转基因小麦的分蘖数减少,植株高度降低。这些生理性状的改变与COMT基因转化的关系将有待于进一步验证。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme catechol-o-methyltransferase (COMT) transfers a methyl group from adenosylmethionine to catecholamines including the neurotransmitters dopamine, epinephrine and norepinephrine. This methylation results in the degradation of catecholamines. The involvement of the COMT gene in the metabolic pathway of these neurotransmitters has made it an attractive candidate gene for many psychiatric disorders. In this article, we reported our study of association of COMT with schizophrenia in Irish families with a high density of schizophrenia. Three single nucleotide polymorphisms (SNPs) were genotyped for the 274 such families and within-family transmission disequilibrium tests were performed. SNP rs4680, which is the functional Val/Met polymorphism, showed modest association with the disease by the TRANSMIT, FBAT and PDT programs, while the other two SNPs were negative. These SNPs showed lower level of LDs with each other in the Irish subjects than in Ashkenazi Jews. Haplotype analysis indicated that a haplotype, haplotype A-G-A for SNPs rs737865-rs4680-rs165599, was preferentially transmitted to the affected subjects. This was different from the reported G-G-G haplotype found in Ashkenazi Jews, but both haplotypes shared the Val allele. We concluded that COMT gene is associated with schizophrenia and carries a small but significant risk to the susceptibility in the Irish subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1944/07/01 (N4).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1944/09/02 (N8).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1944/08/15 (N7).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variante(s) de titre : La Libre Comté : le premier journal comtois fondé dans la clandestinité

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1944/04 (N1).