985 resultados para CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study proposes to do a study on the mathematical modeling of permeation of films based on chitosan. To conduct the study were obtained membranes with various compositions: a virtually pure membrane-based chitosan; one of chitosan associated with poly (ethylene oxide (PEO). The membranes of pure chitosan were treated with plasma in atmospheres of oxygen, argon and methane. The various types of films were characterized as to its permeation regarding sufamerazina sodium. In the process of mathematical modeling were compared the standard method of obtaining the coefficient of permeation recital straight down the slope of the plot obtained by extinction / time with a the integration process of numerical permeability rate will be calculated from the spectroscopy UV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research there was an evaluation of the best conditions of nitriding in plasma within a cathodic cage at an atmosphere of 80% N2-20%H2 in samples of tool manganese steel AISI D6, cold working, treated thermally in the following conditions: tension relief, treated thermally to temperature of maximum heat, temperate heat and temperate and temperate heat. A pressure of 2.5mbar and temperatures of 400 and 300ºC com treatment time of two and three hours were used to evaluate its performance as cutting tool (punch) of bicycle backs. Hardness, micro-structural aspects (layer thickness, interface, grain size etc), and crystal phases on the surface were appraised. When treated to tension relief, thermally treated to maximum heat temperature, temperature and temperate heat, the samples presented hardness levels of 243HV, 231HV, 832HV, and 653HV, respectively. The best nitrification conditions were: four hours and 300ºC for heat samples. A superficial hardness of 1000HV and a 108µm thickness for the nitrided layer were found in these samples

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The failure of materials is always an unwelcome event for several reasons: human lives are put in danger, economic losses, and interference in the availability of products and services. Although the causes of failures and behaviour of materials can be known, the prevention of such a condition is difficult to be guaranteed. Among the failures, wear abrasion by the low voltage is the kind of failure that occurs in more equipment and parts industry. The Plants Sucroalcooleiras suffer significant losses because of such attrition, this fact that motivated their choice for the development of this work. For both, were considered failures in the swing hammers desfibradores stopped soon after the exchange provided in accordance with tonnage of cane processed, then were analyzed by the level of wear testing of rubber wheel defined by the standard ASTM G65-91.The failures were classified as to the origin of the cause and mechanism, moreover, were prepared with samples of welding procedures according to ASME code, sec. IX as well, using the technique of thermal spraying to analyze the performance of these materials produced in laboratories, and compares them with the solder used in the plant. It was observed that the bodies-of-proof prepared by the procedure described as welding, and the thermal spraying the results of losing weight have been minimized significantly compared to the preparations in the plant. This is because the use of techniques more appropriate and more controlled conditions of the parameters of welding. As for the thermal spraying, this technique has presented a satisfactory result, but requires the use of these coatings in the best condition for real affirmation of the results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of inhibition to corrosion of steel AISI 1018 of surfactant coconut oil saponified (SCO) and heterocyclic type mesoionics (1,3,4-triazólio-2-tiolato) in systems microemulsionados (SCO-ME and SCO-ME-MI) Of type O/A (rich in water emulsion) region with the work of Winsor IV. The systems microemulsionados (SCO-ME and SCO-ME-MI) were evaluated with a corrosion inhibitor for use in saline 10,000 ppm of chloride enriched with carbon dioxide (CO2). The assessment of corrosion inhibitors were evaluated by the techniques of linear polarization resistance (LPR) and loss of weight (MW) in a cell instrumented given the gravity and electrochemical devices. The systems were shooting speed of less than 60 minutes and efficiency of inhibition [SCO-ME (91.25%) and SCO-ME-MI (98.54%)]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective is to analyze the abrasive wear resistance to the low stress of the elements that make up the organs of road machinery that are exposed directly to contact with abrasives. These samples were analyzed after these elements are coated superficially by the process of welding electrode coated with (SAER) and the manual process of coating type LVOF thermal spraying. As well, is to provide suggestions for a better recovery and return of these elements, which are reducing costs and avoiding downtime in the fronts of service. The samples were made from a substrate of carbon ABNT 1045 tempered steel, following the same specifications and composition of metals and alloys of constituents was followed the standard governing the dimensions of these samples and in accordance with the corresponding size. The results were evaluated by testing the hardness, abrasion resistance to wear by the low stress and the loss of volume involving the microstructure of coatings analyzed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the research, steel samples tool AISI D2, treated thermally, in the conditions: relief of tension, when maximum, seasoned and seasoned was treated thermally in the temperature of revenimento and revenida had been nitrited in plasma with cathodic cage, in atmosphere of 80%N2:20%H2. One used pressure of 2,5 mbar, 400 and 480°C temperatures with treatment time of 3 and 4 hours, with the objective to evaluate its performance in pipes cut tool. It was compared that the performance of the same steel when only thermally treated, both with tension relief. It was evaluated its hardness. Microstructural aspects (the layer thickness, interface, graisn size, etc) and crystalline phases on the surface. Besides, it was verified accomplishment possibility of nitriding simultaneous to annealing treatment. The tempering samples had presented hardness levels of 600 HV, while in nitrited samples these values had been 1100 HV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na unfolding method of linear intercept distributions and secction área distribution was implemented for structures with spherical grains. Although the unfolding routine depends on the grain shape, structures with spheroidal grains can also be treated by this routine. Grains of non-spheroidal shape can be treated only as approximation. A software was developed with two parts. The first part calculates the probability matrix. The second part uses this matrix and minimizes the chi-square. The results are presented with any number of size classes as required. The probability matrix was determined by means of the linear intercept and section area distributions created by computer simulation. Using curve fittings the probability matrix for spheres of any sizes could be determined. Two kinds of tests were carried out to prove the efficiency of the Technique. The theoretical tests represent ideal cases. The software was able to exactly find the proposed grain size distribution. In the second test, a structure was simulated in computer and images of its slices were used to produce the corresponding linear intercept the section area distributions. These distributions were then unfolded. This test simulates better reality. The results show deviations from the real size distribution. This deviations are caused by statistic fluctuation. The unfolding of the linear intercept distribution works perfectly, but the unfolding of section area distribution does not work due to a failure in the chi-square minimization. The minimization method uses a matrix inversion routine. The matrix generated by this procedure cannot be inverted. Other minimization method must be used

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural nanoclays are of great interest particularly for the production of polymer-based nanocomposites. In this work, kaolinite clays from two natural deposits in the State of the Rio Grande do Norte and Paraiba were purified with thermal treatment and chemical treatments, and characterized. Front to the gotten data, had been proposals methodologies for elimination or reduction of coarse particle texts, oxide of iron and organic substance. These methodologies had consisted of the combination of operations with thermal treatments, carried through in electric oven, and acid chemical attacks with and hydrogen peroxide. The Analyzers Thermogravimetric was used to examine the thermal stability of the nanoclays. The analysis indicated weight losses at temperatures under 110 ºC and over the temperature range of 350 to 550 ºC. Based on the thermal analysis data, the samples were submitted to a thermal treatment at 500 °C, for 8 h, to remove organic components. The X-ray diffraction patterns indicated that thermal treatment under 500 °C affect the basic structure of kaolinite. The BET surface area measurements ranged from 32 to 38 m2/g for clay samples with thermal treatment and from 36 to 53 m2/g for chemically treated samples. Thus, although the thermal treatment increased the surface area, through the removal of organic components, the effect was not significant and chemical treatment is more efficient, not affect the basic structure of kaolinite, to improve particle dispersion. SEM analysis confirms that the clay is agglomerated forming micron-size particles

Relevância:

100.00% 100.00%

Publicador:

Resumo:

heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to develop a methodology for analysis of images using overlapping, which assists in identification of microstructural features in areas of titanium, which may be associated with its biological response. That way, surfaces of titanium heat treated for 08 (eight) different ways have been subjected to a test culture of cells. It was a relationship between the grain, texture and shape of grains of surface of titanium (attacked) trying to relate to the process of proliferation and adhesion. We used an open source software for cell counting adhered to the surface of titanium. The juxtaposition of images before and after cell culture was obtained with the aid of micro-hardness of impressions made on the surface of samples. From this image where there is overlap, it is possible to study a possible relationship between cell growth with microstructural characteristics of the surface of titanium. This methodology was efficient to describe a set of procedures that are useful in the analysis of surfaces of titanium subjected to a culture of cells

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direct use of natural gas makes the Solid Oxide Fuel Cell (SOFC) potentially more competitive with the current energy conversions technologies. The Intermediate Temperature SOFC (IT-SOFC) offer several advantages over the High Temperature SOFC (HT-SOFC), which includes better thermal compatibility among components, fast start with lower energy consumption, manufacture and operation cost reduction. The CeO2 based materials are alternatives to the Yttria Stabilized Zirconia (YSZ) to application in SOFC, as they have higher ionic conductivity and less ohmic losses comparing to YSZ, and they can operate at lower temperatures (500-800°C). Ceria has been doped with a variety of cations, although, the Gd3+ has the ionic radius closest to the ideal one to form solid solution. These electrolytes based in ceria require special electrodes with a higher performance and chemical and termomechanical compatibility. In this work compounds of gadolinia-doped ceria, Ce1-xGdxO2-δ (x = 0,1; 0,2 and 0,3), used as electrolytes, were synthesized by polymeric precursors method, Pechini, as well as the composite material NiO - Ce0,9Gd0,1O1,95, used as anode, also attained by oxide mixture method, mixturing the powders of the both phases calcinated already. The materials were characterized by X ray diffraction, dilatometry and scanning electronic microscopy. The refinement of the diffraction data indicated that all the Ce1-xGdxO2-δ powders were crystallized in a unique cubic phase with fluorite structure, and the composite synthesized by Pechini method produced smaller crystallite size in comparison with the same material attained by oxide mixture method. All the produced powders had nanometric characteristics. The composite produced by Pechini method has microstructural characteristics that can increase the triple phase boundaries (TPB) in the anode, improving the cell efficiency, as well as reducing the mass transport mechanism effect that provokes anode degradation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several problems related to the loss of hydraulic seal in oilwells, causing gas migration and/or contamination of the production zone by water, have been reported. The loss of the hydraulic seal is a consequence of cracks which can be occasioned either by the invasion of gas during the wait on cement or by the expansion of the casing causing the fracture of the cement sheath. In case of the pressure of the formation is higher than the pressure in the annulus, gas can migrate into the slurry and form microannulus, which are channels where gas migrates after the cement is set. Cracks can be also occasioned by the fracture of the cement sheath when it does not withstand the thermal and dynamic loads. In reservoirs where the oil is heavy, steam water injection operation is required in order to get the oil flowing. This operation increases the temperature of the casing, and then it expands and causes the fracture of the cement sheath in the annulus. When the failures on the cement are detected, remedial cementing is required, which raise costs caused by the interventions. Once the use of cement in the construction civil sector is older than its use in the petroleum sector, it is common to bring technologies and solutions from the civil construction and apply them on the petroleum area. In this context, vermiculite, a mineral-clay widely encountered in Brazil, has been used, on its exfoliated form, in the civil construction, especially on the manufacture of lights and fireproof concretes with excellent thermal and acoustical properties. It has already been reported in scientific journals, studies of the addition of exfoliated vermiculite in Portland cements revealing good properties related to oilwell cementing operations. Thus, this study aimed to study the rheological behavior, thickening time, stability and compressive strength of the slurries made of Portland cement and exfoliated vermiculite in 5 different compositions, at room temperature and heated. The results showed that the compressive strength decreased with the addition of exfoliated vermiculite, however the values are still allowed for oiwell cementing operations. The thickening time of the slurry with no exfoliated vermiculite was 120 min and the thickening time of the slurry with 12 % of exfoliated vermiculite was 98 min. The stability and the rheological behavior of the slurries revealed that the exfoliated vermiculite absorbed water and therefore increased the viscosity of the slurries, even though increasing the factor cement-water. The stability experiment carried out at 133 ºF showed that, there was neither sedimentation nor reduction of the volume of the cement for the slurry with 12 % of exfoliated vermiculite. Thus, the addition of exfoliated vermiculite accelerates the set time of the cement and gives it a small shrinkage during the wait on cement, which are important to prevent gas migration

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceramics materials have good properties including chemical stability, high hardness and wear resistance. Moreover, due to its fragility, can suffer failure under relatively low levels of tension. Actually zirconia is the material of choice in metal free dental prostheses used in dentistry due its inertia in physiological environment, good bending strength, hardness and fracture toughness. The alumina and mixed tungsten and titanium carbides additions, acting as reinforcement elements in the zirconia matrix, have as their main objective the improvement of mechanical properties of this material. In this work, samples of zirconia, zirconia with 30% wt of alumina and zirconia with 30% wt mixed carbides were analyzed. The samples were sintered by uniaxial hot pressing on 30 MPa pressure, for 1 hour in an argon atmosphere. They were physically characterized by porosity and density measurements, and mechanically by 3-points bending strength and Vickers microhardness. The X-ray diffraction was used for the phase identifications and microstructure was examined by scanning electron microscopy (SEM). The addition of mixed carbides as reinforcement elements in zirconia matrix provides improvements in all properties analyzed in this work. The alumina addition has dropped the zirconia strength, although it caused improvement in other properties