296 resultados para CD34


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New blood cells are continuously provided by self-renewing multipotent hematopoietic stem cells (HSC). The capacity of HSCs to regenerate the hematopoietic system is utilized in the treatment of patients with hematological malignancies. HSCs can be enriched using an antibody-based recognition of CD34 or CD133 glycoproteins on the cell surface. The CD133+ and CD34+ cells may have partly different roles in hematopoiesis. Furthermore, each cell has a glycome typical for that cell type. Knowledge of HSC glycobiology can be used to design therapeutic cells with improved cell proliferation or homing properties. The present studies characterize the global gene expression profile of human cord blood-derived CD133+ and CD34+ cells, and demonstrate the differences between CD133+ and CD34+ cell populations that may have an impact in transplantation when CD133+ and CD34+ selected cells are used. In addition, these studies unravel the glycome profile of primitive hematopoietic cells and reveal the transcriptional regulation of N-glycan biosynthesis in CD133+ and CD34+ cells. The gene expression profile of CD133+ cells represents 690 differentially expressed transcripts between CD133+ cells and CD133- cells. CD34+ cells have 620 transcripts differentially expressed when compared to CD34- cells. The integrated CD133+/CD34+ cell gene expression profiles proffer novel transcripts to specify HSCs. Furthermore, the differences between the gene expression profiles of CD133+ and CD34+ cells indicate differences in the transcriptional regulation of CD133+ and CD34+ cells. CD133+ cells express a lower number of hematopoietic lineage differentiation marker genes than CD34+ cells. The expression profiles suggest a more primitive nature of CD133+ cells. Moreover, CD133+ cells have characteristic glycome that differ from the glycome of CD133- cells. High mannose-type and biantennary complex-type N-glycans are enriched in CD133+ cells. N-glycosylation-related gene expression pattern of CD133+ cells identify the key genes regulating the CD133+ cell-specific glycosylation including the overexpression of MGAT2 and underexpression of MGAT4. The putative role of MAN1C1 in the increase of unprocessed high mannose-type N-glycans in CD133+ cells is also discussed. These studies provide new information on the characteristics of HSCs. Improved understanding of HSC biology can be used to design therapeutic cells with improved cell proliferation and homing properties. As a result, HSC engineering could further their clinical use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the phagocytic-like capacity of human CD34+ stromal cells/telocytes (TCs). For this, we examined segments of the colon after injection of India ink to help surgeons localize lesions identified at endoscopy. Our results demonstrate that CD34+ TCs have endocytic properties (phagocytic-like TCs: phTCs), with the capacity to uptake and store India ink particles. phTCs conserve the characteristics of TCs (long, thin, bipolar or multipolar, moniliform cytoplasmic processes/telopodes, with linear distribution of the pigment) and maintain their typical distribution. Likewise, they are easily distinguished from pigment-loaded macrophages (CD68+ macrophages, with oval morphology and coarse granules of pigment clustered in their cytoplasm). A few c-kit/CD117+ interstitial cells of Cajal also incorporate pigment and may conserve the phagocytic-like property of their probable TC precursors. CD34+ stromal cells in other locations (skin and periodontal tissues) also have the phagocytic-like capacity to uptake and store pigments (hemosiderin, some components of dental amalgam and melanin). This suggests a function of TCs in general, which may be related to the transfer of macromolecules in these cells. Our ultrastructural observation of melanin-storing stromal cells with characteristics of TCs (telopodes with dichotomous branching pattern) favours this possibility. In conclusion, intestinal TCs have a phagocytic-like property, a function that may be generalized to TCs in other locations. This function (the ability to internalize small particles), together with the capacity of these cells to release extracellular vesicles with macromolecules, could close the cellular bidirectional cooperative circle of informative exchange and intercellular interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ex vivo T cell depletion of allogeneic grafts is associated with a high (up to 80%) rate of mixed chimerism (MC) posttransplantation. The number of transplanted progenitor cells is an important factor in achieving complete donor chimerism in the T cell depletion setting. Use of granulocyte colony-stimulating factor (G-CSF) peripheral blood allografts allows the administration of large numbers of CD34+ cells. We studied the chimeric status of 13 patients who received allogeneic CD34+-selected peripheral blood progenitor cell transplants (allo-PBPCTs/CD34+) from HLA-identical sibling donors. Patients were conditioned with cyclophosphamide (120 mg/kg) and total-body irradiation (13 Gy in four fractions). Apheresis products were T cell-depleted by the immunoadsorption avidin-biotin method. The median number of CD34+ and CD3+ cells infused was 2.8x10(6)/kg (range 1.9-8.6x10(6)/kg) and 0.4x10(6)/kg (range 0.3-1x10(6)/kg), respectively. Molecular analysis of the engraftment was performed using polymerase chain reaction (PCR) amplification of highly polymorphic short tandem repeat (PCR-STR) sequences in peripheral blood samples. MC was detected in two (15%) of 13 patients. These two patients relapsed at 8 and 10 months after transplant, respectively. The remaining 11 patients showed complete donor chimerism and were in clinical remission after a maximum follow-up period of 24 months (range 6-24 months). These results were compared with those obtained in 10 patients who were treated with T cell-depleted bone marrow transplantation by means of elutriation and who received the same conditioning treatment and similar amounts of CD3+ cells (median 0.45x10(6)/kg; not significant) but a lower number of CD34+ cells (median 0.8x10(6)/kg; p = 0.001). MC was documented in six of 10 patients (60%), which was significantly higher than in the allo-PBPCT/CD34+ group (p = 0.04). We conclude that a high frequency of complete donor chimerism is achieved in patients receiving allo-PBPCT/CD34+ and that this is most likely due to the high number of progenitor cells administered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le sang provenant d’un cordon ombilical (SCO) représente une bonne source de cellules souches hématopoïétiques (CSH) pour des transplantations. Cependant, le nombre de cellules souches contenues dans ce sang est souvent insuffisant pour greffer un adulte. Le mécanisme intervenant dans la domiciliation de ces cellules au sein de la moelle osseuse (MO) est encore mal compris. On sait que l’interaction entre la chimiokine SDF-1 et le récepteur CXCR4, présent sur les cellules CD34+ de SCO, mène à la migration de ces cellules en direction de la MO. Nous pensons que l’augmentation de la proportion de cellules qui réussit à se greffer pourra pallier au problème du nombre. Les produits de dégradation, C3a et le C3desarg,, issus du système du complément, sont connus pour favoriser la réponse de cellules exprimant CXCR4 vers SDF-1. Nous avons analysé l’effet du C3adesarg, molécule non anaphylatoxique, sur la migration cellulaire vers SDF-1, de même que sur la prise de greffe des cellules CD34+ issues de SCO suite à une transplantation sur des souris NOD/SCIDyC-. Nos expériences ont démontré que le C3a ainsi que le C3adesarg augmentaient tous les deux la réponse des cellules CD34+ vers SDF-1. Toutefois, nous n’avons pas pu démontrer que ces molécules liaient directement le récepteur CXCR4. Par contre, le composé C3adesarg favorise la prise de greffe des cellules CD34+ de SCO. Il serait donc un bon candidat pour poursuivre une optimisation de ses propriétés. Nous avons également constaté que suite à une transplantation chez la souris, les cellules CD34+ de SCO subissent une hausse d’expression transitoire de leur CXCR4 environ quatre jours après la greffe. Cette hausse d’expression coïncide avec la multiplication des cellules CD34+ dans la MO. Nous avons également confirmé qu’une cellule CD34+ avec une forte expression de CXCR4 était dans un état prolifératif. Nos données suggèrent que l’interaction directe avec les cellules stromales soit responsable de cette hausse d’expression de CXCR4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The aim of this study was to evaluate the effect of raloxifene on CD34 and Ki-67 antigen expression in breast cancer specimens from postmenopausal women. Methods: Sixteen postmenopausal patients with operable, stage II (>= 3 cm), estrogen receptor-positive breast cancer, who took 60 mg of raloxifene daily for 28 days, participated in this study. Immunohistochemistry was carried out in tumor samples prior to and following raloxifene treatment to evaluate CD34 and Ki-67 protein expression. Angiogenesis was quantified in 10 randomly selected fields per slide, and Ki-67-stained nuclei were counted in 1,000 cells per slide using an image capture and analysis system with 400 ! magnification. Student`s t test for paired samples was used for the statistical analysis of data. Statistical significance was established at p < 0.05. Results: The mean number of microvessels was 44.44 +/- 3.54 prior to raloxifene therapy and 22.63 +/- 1.61 following therapy (p < 0.001), and the mean percentage of Ki-67-stained nuclei was 19.28 +/- 8 1.61 and 12.13 +/- 8 1.48 prior to and following raloxifene treatment, respectively (p < 0.001). Conclusion: Raloxifene significantly reduces CD34 and Ki-67 protein expression in breast carcinoma in postmenopausal women. Copyright (C) 2008 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background aims. Cord blood is considered to be a superior source of hematopoietic stem and progenitor cells for transplantation, but clinical use is limited primarily because of the low numbers of cells harvested. Ex vivo expansion has the potential to provide a safe, effective means of increasing cell numbers. However, an absence of consensus regarding optimum expansion conditions prevents standard implementation. Many studies lack clinical applicability, or have failed to investigate the combinational effects of different parameters.

Methods. This is the first study to characterize systematically the effect of growth factor combinations across multiple oxygen levels on the ex vivo expansion of cord blood CD34 hematopoietic cells utilizing clinically approvable reagents and methodologies throughout.

Results. Optimal fold expansion, as assessed both phenotypically and functionally, was greatest with thrombopoietin, stem cell factor, Flt-3 ligand and interleukin-6 at an oxygen level of 10%. With these conditions, serial expansion showed continual target population expansion and consistently higher expression levels of self-renewal associated genes.

Conclusions. This study has identified optimized fold expansion conditions, with the potential for direct clinical translation to increase transplantable cell dose and as a baseline methodology against which future factors can be tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 The major findings established a mouse brown adipose tissue (BAT)-enriched miRNA profile conserved in human BAT and predicted to target genes potentially involved in growth and development. The present results also identified a human skeletal muscle-derived CD34+ cell population with the capacity to differentiate into brown adipocytes in vitro. These CD34+ expressed common miRNAs to mouse and human BAT. Finally these findings show an up-regulation of 4 miRNAs in human adult skeletal muscle following cold exposure. These miRNAs were also present in mouse and human BAT as well as in CD34+ brown adipocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumo não disponível.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiogenesis, a fundamental mechanism in tumor development, is used for differential diagnosis and prognosis purposes in various neoplasias of the head and neck. This study proposes to assess angiogenic activity using immunohistochemical expression by anti-CD105 and anti-CD34 antibodies in 20 cases of hemangiomas and 20 cases of oral pyogenic granulomas, in addition to determining the usefulness of these markers as one of the differential diagnosis resources for these two oral lesions. The results showed no statistically significant difference between microvascular count (MVC) means determined by anti-CD105 (p = 0.803) and anti-CD34 (p = 0.279) antibodies. The mean number of vessels obtained by MVC in the oral hemangiomas immunostained by anti-CD105 and anti-CD34 was 18.75 and 59.72, respectively, whereas in the oral pyogenic granulomas, the mean number was 20.22 and 48.09 respectively. It was also shown that CD34 was more effective than CD105 in identifying blood vessels. However, it must be pointed out that the anti-CD105 antibody seems to be more related to vascular neoformation. Overall, this assay reinforces the role of angiogenic factors in the etiopathogenesis of hemangiomas and oral pyogenic granulomas, but the results showed that angiogenesis quantification cannot be used as a differential diagnosis parameter between the two lesions analyzed