926 resultados para C5a Receptor Antagonist


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous structure-activity studies have shown that the disulphide bridge of calcitonin gene-related peptide (CGRP) is important for the highly potent, CGRP receptor-mediated effects of this peptide. In this study penicillamine (Pen) was substituted for one or both of the cysteinyl residues to determine conformational and topographical properties of the disulphide bridge favourable for binding to CGRP receptors and/or receptor activation. Pen constrains the conformational flexibility of disulphide bridges in other peptides. Binding affinities were measured using a radioligand binding assay with membranes prepared from pig coronary arteries and I-125-h-alpha-CGRP. Functional effects were characterized using a previously reported pig coronary artery relaxation bioassay. The binding affinity of [Pen(2)]h-alpha-CGRP was not significantly different from that of h-alpha-CGRP. All other analogues showed reduced affinity for CGRP receptors. [Pen(2)]h-alpha-CGRP also caused relaxation of coronary arteries. The remaining analogues either caused relaxation with significantly reduced potency or failed to relax the arteries at concentrations up to 1 x 10(-5) M. All analogues that did not relax coronary arteries contained a D-Pen in position 7 and inhibited CGRP-induced relaxation. [D-Pen(2,7)]h-alpha- CGRP was the most potent antagonist with a K-B value of 630 nM. This affinity is similar to that of the classical CGRP receptor antagonist, h-alpha-CGRP(8-37), on these arteries (K-B, 212 nM). These studies show that modifying the topography of the disulphide bridge can cause large and variable effects on ligand binding and activation of CGRP receptors. The contribution of position 7 to the conformation and topography of the disulphide bridge of h-alpha-CGRP is crucial to the future design of agonists of CGRP receptors. Furthermore, position 7 is important for the development of new CGRP receptor antagonists with structures based on the whole sequence of h-alpha-CGRP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel N-terminally substituted Pro(3) analogue of glucose-dependent insulinotropic polypeptide (GIP) was synthesized and tested for plasma stability and biological activity both in vitro and in vivo. Native GIP was rapidly degraded by human plasma with only 39 +/- 6% remaining intact after 8 h, whereas (Pro(3))GIP was completely stable even after 24 h. In CHL cells expressing the human GIP receptor, (Pro(3))GIP antagonized the cyclic adenosine monophosphate (cAMP) stimulatory ability of 10(-7)M native GIP, with an IC50 value of 2.6 muM. In the clonal pancreatic beta cell line BRIN-BD11, (Pro(3))GIP over the concentration range 10(-13) to 10(-8) M dose dependently inhibited GIP-stimulated (10(-7) M) insulin release (1.2- to 1.7-fold; P <0.05 to P <0.001). In obese diabetic (ob/ob) mice, intraperitoneal administration of (Pro(3))GIP (25 nmol/kg body wt) countered the ability of native GIP to stimulate plasma insulin (2.4-fold decrease; P <0.001) and lower the glycemic excursion (1.5-fold decrease; P <0.001) induced by a glucose load (18 mmol/kg body wt). Collectively these data demonstrate that (Pro(3))GIP is a novel and potent enzyme-resistant GIP receptor antagonist capable of blocking the ability of native GIP to increase cAMP, stimulate insulin secretion, and improve glucose homeostasis in a commonly employed animal model of type 2 diabetes. (C) 2002 Elsevier Science (USA).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transient receptor potential melastatin 8 (TRPM8) channel has been characterized as a cold and menthol receptor expressed in a subpopulation of sensory neurons but was recently identified in other tissues, including the respiratory tract, urinary system, and vasculature. Thus TRPM8 may play multiple functional roles, likely to be in a tissue- and activation state-dependent manner. We examined the TRPM8 channel presence in large arteries from rats and the functional consequences of their activation. We also aimed to examine whether these channels contribute to control of conscious human skin blood flow. TRPM8 mRNA and protein were detected in rat tail, femoral and mesenteric arteries, and thoracic aorta. This was confirmed in single isolated vascular myocytes by immunocytochemistry. Isometric contraction studies on endothelium-denuded relaxed rat vessels found small contractions on application of the TRPM8-specific agonist menthol (300 microM). However, both menthol and another agonist icilin (50 microM) caused relaxation of vessels precontracted with KCl (60 mM) or the alpha-adrenoceptor agonist phenylephrine (2 microM) and a reduction in sympathetic nerve-mediated contraction. These effects were antagonized by bromoenol lactone treatment, suggesting the involvement of Ca(2+)-independent phospholipase A(2) activation in TRPM8-mediated vasodilatation. In thoracic aorta with intact endothelium, menthol-induced inhibition of KCl-induced contraction was enhanced. This was unaltered by preincubation with either N(omega)-nitro-l-arginine methyl ester (l-NAME; 100 nM), a nitric oxide synthase inhibitor, or the ACh receptor antagonist atropine (1 microM). Application of menthol (3% solution, topical application) to skin caused increased blood flow in conscious humans, as measured by laser Doppler fluximetry. Vasodilatation was markedly reduced or abolished by prior application of l-NAME (passive application, 10 mM) or atropine (iontophoretic application, 100 nM, 30 s at 70 microA). We conclude that TRPM8 channels are present in rat artery vascular smooth muscle and on activation cause vasoconstriction or vasodilatation, dependent on previous vasomotor tone. TRPM8 channels may also contribute to human cutaneous vasculature control, likely with the involvement of additional neuronal mechanisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We examined the extent to which the systemic and renal vasoconstriction induced by nitric oxide (NO) inhibition in vivo is mediated by endothelin (ET). We examined the effects of BQ-610, a specific ETA-receptor antagonist, after NO inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) in the anesthetized rat. Mean arterial pressure (MAP) increased after L-NAME infusion from 107 +/- 2 to 133 +/- 3 mmHg (P

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Extracts from the Ginkgo biloba tree are widely used as herbal medicines, and include bilobalide (BB) and ginkgolides A and B (GA and GB). Here we examine their effects on human 5-HT(3)A and 5-HT(3)AB receptors, and compare these to the effects of the structurally related compounds picrotin (PTN) and picrotoxinin (PXN), the two components of picrotoxin (PTX), a known channel blocker of 5-HT3, nACh and GABA(A) receptors. The compounds inhibited 5-HT-induced responses of 5-HT3 receptors expressed in Xenopus oocytes, with IC50 values of 470 mu M (BB), 730 mu M (GB), 470 mu M (PTN), 11 mu M (PXN) and > 1 mM (GA) in 5-HT(3)A receptors, and 3.1 mM (BB), 3.9 mM (GB), 2.7 mM (PTN), 62 mu M (PXN) and > 1 mM (GA) in 5-HT(3)AB receptors. Radioligand binding on receptors expressed in HEK 293 cells showed none of the compounds displaced the specific 5-HT3 receptor antagonist [H-3]granisetron, confirming that they do not act at the agonist binding site. Inhibition by GB at 5-HT(3)A receptors is weakly use-dependent, and recovery is activity dependent, indicating channel block. To further probe their site of action at 5-HT(3)A receptors, BB and GB were applied alone or in combination with PXN, and the results fitted to a mathematical model; the data revealed partially overlapping sites of action. We conclude that BB and GB block the channel of the 5-HT(3)A receptor. Thus these compounds have comparable, although less potent, behaviour than at some other Cys-loop receptors, demonstrating their actions are conserved across the family. (C) 2010 Published by Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study was designed to determine if the histamine H3 receptor agonist R-alpha-methylhistamine would play a role in modulation of sympathetically evoked mydriasis in anesthetized rats, and if so, to ascertain the specific receptor subtype(s) involved. Reproducible frequency-response curves of pupillary dilation were generated by stimulation of the cervical preganglionic sympathetic nerve (1-32 Hz). Systemic administration of R-alpha-methylhistamine (0.3-3.0 mg kg(-1)) produced a dose-related inhibition of the evoked mydriasis. The greatest inhibition was seen at lower frequency levels, with about 43% depression observed at 2 Hz. The specific histamine H3 receptor antagonist, clobenpropit (3.0 mg kg(-1), i.v.), blocked the inhibitory effect of R-alpha-methylhistamine, whereas neither the histamine H2 receptor antagonist, cimetidine (5.0 mg kg(-1), i.v.), nor the histamine H1 receptor antagonist, chlorpheniramine (0.5 mg kg(-1), i.v.), was effective. The histamine H2 receptor agonist, dimaprit (10 mg kg(-1), i.v.), was also without effect on the evoked mydriasis. R-alpha-methylhistamine (3.0 mg kg(-1)) did not inhibit phenylephrine-induced mydriasis. These results support the conclusion that R-alpha-methylhistamine produces inhibition of sympathetically evoked mydriasis via histamine H3 receptor stimulation, presumably by an action on presynaptic histamine H3 receptors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Among the pathogenic mechanisms of asthma, a role for oxidative/nitrosative stress has been well documented. Recent evidence suggests that histamine H₄ receptors play a modulatory role in allergic inflammation. Here we report the effects of compound JNJ 7777120 (JNJ), a selective H4 receptor antagonist, on antigen-induced airway inflammation, paying special attention to its effects on lipocortin-1 (LC-1/annexin-A1), a 37 kDA anti-inflammatory protein that plays a key role in the production of inflammatory mediators.

EXPERIMENTAL APPROACH: Ovalbumin (OA)-sensitized guinea pigs placed in a respiratory chamber were challenged with antigen. JNJ (5, 7.5 and 10 mg.kg⁻¹) was given i.p. for 4 days before antigen challenge. Respiratory parameters were recorded. Bronchoalveolar lavage (BAL) fluid was collected and lung specimens taken for further analyses 1 h after antigen challenge. In BAL fluid, levels of LC-1, PGD2 , LTB4 and TNF-α were measured. In lung tissue samples, myeloperoxidase, caspase-3 and Mn-superoxide dismutase activities and 8-hydroxy-2-deoxyguanosine levels were measured.

KEY RESULTS: OA challenge decreased LC-1 levels in BAL fluid, induced cough, dyspnoea and bronchoconstriction and increased PGD2 , LTB4 and TNF-α levels in lung tissue. Treatment with JNJ dose-dependently increased levels of LC-1, reduced respiratory abnormalities and lowered levels of PGD2 , LTB4 and TNF-α in BAL fluid.

CONCLUSIONS AND IMPLICATIONS: Antigen-induced asthma-like reactions in guinea pigs decreased levels of LC-1 and increased TNF-α and eicosanoid production. JNJ pretreatment reduced allergic asthmatic responses and airway inflammation, an effect associated with LC-1 up-regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and purpose: The aim of this report is to study mechanisms of G protein activation by agonists. Experimental approach: The association and dissociation of guanosine 5'-O-(3-[S-35] thio) triphosphate ([S-35] GTP gamma S) binding at G proteins in membranes of CHO cells stably transfected with the human dopamine D-2short receptor was studied in the presence of a range of agonists. Key results: Binding of [S-35] GTPgS was dissociable in the absence of agonist and dissociation was accelerated both in rate and extent by dopamine, an effect which was blocked by the dopamine D-2 receptor antagonist raclopride and by suramin, which inhibits receptor/G protein interaction. A range of agonists of varying efficacy increased the rate of dissociation of [S-35] GTPgS binding, with the more efficacious agonists resulting in faster dissociation. Agonists were able to dissociate about 70% of the pre-bound [S-35] GTPgS, leaving a component which may not be accessible to the agonist-bound receptor. The dissociable component of the [S-35] GTPgS binding was reduced with longer association times and increased [S-35] GTPgS concentrations. Conclusions and implications: These data are consistent with [S-35] GTPgS binding being initially to receptor-linked G proteins and then to G proteins which have separated from the agonist bound receptor. Under the conditions used typically for [S-35] GTPgS binding assays, therefore, much of the agonist-receptor complex remains in proximity to G proteins after they have been activated by agonist.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND & AIMS: We studied the role of protease-activated receptor 2 (PAR(2)) and its activating enzymes, trypsins and tryptase, in Clostridium difficile toxin A (TxA)-induced enteritis. METHODS: We injected TxA into ileal loops in PAR(2) or dipeptidyl peptidase I (DPPI) knockout mice or in wild-type mice pretreated with tryptase inhibitors (FUT-175 or MPI-0442352) or soybean trypsin inhibitor. We examined the effect of TxA on expression and activity of PAR(2) and trypsin IV messenger RNA in the ileum and cultured colonocytes. We injected activating peptide (AP), trypsins, tryptase, and p23 in wild-type mice, some pretreated with the neurokinin 1 receptor antagonist SR140333. RESULTS: TxA increased fluid secretion, myeloperoxidase activity in fluid and tissue, and histologic damage. PAR(2) deletion decreased TxA-induced ileitis, reduced luminal fluid secretion by 20%, decreased tissue and fluid myeloperoxidase by 50%, and diminished epithelial damage, edema, and neutrophil infiltration. DPPI deletion reduced secretion by 20% and fluid myeloperoxidase by 55%. In wild-type mice, FUT-175 or MPI-0442352 inhibited secretion by 24%-28% and tissue and fluid myeloperoxidase by 31%-71%. Soybean trypsin inhibitor reduced secretion to background levels and tissue myeloperoxidase by up to 50%. TxA increased expression of PAR(2) and trypsin IV in enterocytes and colonocytes and caused a 2-fold increase in Ca(2+) responses to PAR(2) AP. AP, tryptase, and trypsin isozymes (trypsin I/II, trypsin IV, p23) caused ileitis. SR140333 prevented AP-induced ileitis. CONCLUSIONS: PAR(2) and its activators are proinflammatory in TxA-induced enteritis. TxA stimulates existing PAR(2) and up-regulates PAR(2) and activating proteases, and PAR(2) causes inflammation by neurogenic mechanisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rationale: Animal studies indicate that dopamine pathways in the ventral striatum code for the motivational salience of both rewarding and aversive stimuli, but evidence for this mechanism in humans is less established. We have developed a functional magnetic resonance imaging (fMRI) model which permits examination of the neural processing of both rewarding and aversive stimuli. Objectives: The aim of the study was to determine the effect of the dopamine receptor antagonist, sulpiride, on the neural processing of rewarding and aversive stimuli in healthy volunteers. Methods: We studied 30 healthy participants who were randomly allocated to receive a single dose of sulpiride (400 mg) or placebo, in a double-blind, parallel-group design. We used fMRI to measure the neural response to rewarding (taste or sight of chocolate) and aversive stimuli (sight of mouldy strawberries or unpleasant strawberry taste) 4 h after drug treatment. Results: Relative to placebo, sulpiride reduced blood oxygenation level-dependent responses to chocolate stimuli in the striatum (ventral striatum) and anterior cingulate cortex. Sulpiride also reduced lateral orbitofrontal cortex and insula activations to the taste and sight of the aversive condition. Conclusions: These results suggest that acute dopamine receptor blockade modulates mesolimbic and mesocortical neural activations in response to both rewarding and aversive stimuli in healthy volunteers. This effect may be relevant to the effects of dopamine receptor antagonists in the treatment of psychosis and may also have implications for the possible antidepressant properties of sulpiride.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Disturbances in the regulation of reward and aversion in the brain may underlie disorders such as obesity and eating disorders. We previously showed that the cannabis receptor subtype (CB1) inverse agonist rimonabant, an antiobesity drug withdrawn due to depressogenic side effects, diminished neural reward responses yet increased aversive responses (Horder et al., 2010). Unlike rimonabant, tetrahydrocannabivarin is a neutral CB1 receptor antagonist (Pertwee, 2005) and may therefore produce different modulations of the neural reward system. We hypothesized that tetrahydrocannabivarin would, unlike rimonabant, leave intact neural reward responses but augment aversive responses. Methods: We used a within-subject, double-blind design. Twenty healthy volunteers received a single dose of tetrahydrocannabivarin (10mg) and placebo in randomized order on 2 separate occasions. We measured the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (picture of moldy strawberries and/or a less pleasant strawberry taste) using functional magnetic resonance imaging. Volunteers rated pleasantness, intensity, and wanting for each stimulus. Results: There were no significant differences between groups in subjective ratings. However, tetrahydrocannabivarin increased responses to chocolate stimuli in the midbrain, anterior cingulate cortex, caudate, and putamen. Tetrahydrocannabivarin also increased responses to aversive stimuli in the amygdala, insula, mid orbitofrontal cortex, caudate, and putamen. Conclusions: Our findings are the first to show that treatment with the CB1 neutral antagonist tetrahydrocannabivarin increases neural responding to rewarding and aversive stimuli. This effect profile suggests therapeutic activity in obesity, perhaps with a lowered risk of depressive side effects. Keywords: reward, THCv, obesity, fMRI, cannabinoid

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Accelerated gastric emptying (GE) may lead to reduced satiation, increased food intake and is associated with obesity and type 2 diabetes. Domperidone is a dopamine 2 (D(2)) receptor antagonist with claims of gastrointestinal tract pro-kinetic activity. In humans, domperidone is used as an anti-emetic and treatment for gastrointestinal bloating and discomfort. AIM: To determine the effect of acute domperidone administration on GE rate and appetite sensations in healthy adults. METHODS: A single-blind block randomised placebo-controlled crossover study assessed 13 healthy adults. Subjects ingested 10 mg domperidone or placebo 30 min before a high-fat (HF) test meal. GE rate was determined using the (13)CO(2) octanoic acid breath test. Breath samples and subjective appetite ratings were collected in the fasted and during the 360 min postprandial period. RESULTS:Gastric emptying half-time was similar following placebo (254 ± 54 min) and 10 mg domperidone (236 ± 65 min). Domperidone did not change appetite sensations during the 360 min postprandial period (P > 0.05). CONCLUSIONS: In healthy adults, acute administration of 10 mg domperidone did not change GE or appetite sensations following a HF test meal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lipopolysaccharides from gram-negative bacteria are amongst the most common causative agents of acute lung injury, which is characterized by an inflammatory response, with cellular infiltration and the release of mediators/cytokines. There is evidence that bradykinin plays a role in lung inflammation in asthma but in other types of lung inflammation its role is less clear. In the present study we evaluated the role of the bradykinin B(1) receptor in acute lung injury caused by lipopolysaccharide inhalation and the mechanisms behind bradykinin actions participating in the inflammatory response. We found that in C57BI/6 mice, the bradykinin B(1) receptor expression was up-regulated 24 h after lipopolysaccharide inhalation. At this time, the number of cells and protein concentration were significantly increased in the bronchoalveolar lavage fluid and the mice developed airway hyperreactivity to methacholine. In addition, there was an increased expression of tumor necrosis factor-alpha, interleukin-1 beta and interferon-gamma and chemokines (monocytes chemotactic protein-1 and KC) in the bronchoalveolar lavage fluid and in the lung tissue. We then treated the mice with a bradykinin B, receptor antagonist, R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8)]desArg(9)-bradykinin), 30 min after lipopolysaccharide administration. We observed that this treatment prevented the airway hyperreactivity as well as the increased cellular infiltration and protein content in the bronchoalveolar lavage fluid. Moreover, R-954 inhibited the expression of cytokines/chemokines. These results implicate bradykinin, acting through B(1) receptor, in the development of acute lung injury caused by lipopolysaccharide inhalation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The P2Y(12) receptor antagonist clopidogrel blocks platelet aggregation, improves systemic endothelial nitric oxide bioavailability and has anti-inflammatory effects. Since P2Y(12) receptors have been identified in the vasculature, we hypothesized that clopidogrel ameliorates Angll (angiotensin II)-induced vascular functional changes by blockade of P2Y(12) receptors in the vasculature. Male Sprague Dawley rats were infused with Angll (60 ng/min) or vehicle for 14 days. The animals were treated with clopidogrel (10 mg . kg(-1) of body weight . day(-1)) or vehicle. Vascular reactivity was evaluated in second-order mesenteric arteries. Clopidogrel treatment did not change systolic blood pressure [(mmHg) control-vehicle, 117 +/- 7.1 versus control-clopidogrel, 125 +/- 4.2; Angll vehicle, 197 +/- 10.7 versus Angll clopidogrel, 198 +/- 5.2], but it normalized increased phenylephrine-induced vascular contractions [(%KCI) vehicle-treated, 182.2 +/- 18% versus clopidogrel, 133 +/- 14%), as well as impaired vasodilation to acetylcholine [(%) vehicle-treated, 71.7 +/- 2.2 versus clopidogrel, 85.3 +/- 2.8) in Angll-treated animals. Vascular expression of P2Y(12) receptor was determined by Western blot. Pharmacological characterization of vascular P2Y(12) was performed with the P2Y(12) agonist 2-MeS-ADP [2-(methylthio) adenosine 5`-trihydrogen diphosphate trisodium]. Although 2-MeS-ADP induced endothelium-dependent relaxation [(Emax %) = 71 +/- 12%) as well as contractile vascular responses (Emax % = 83 +/- 12%), these actions are not mediated by P2Y(12) receptor activation. 2-MeS-ADP produced similar vascular responses in control and Angll rats. These results indicate potential effects of clopidogrel, such as improvement of hypertension-related vascular functional changes that are not associated with direct actions of clopidogrel in the vasculature, supporting the concept that activated platelets contribute to endothelial dysfunction, possibly via impaired nitric oxide bioavailability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

8-Cyclopentyl-3-(3-(4-fluorosulfonylbenzoyl)oxy)propyl-propylxanthine (44, FSCPX) has been reported to exhibit potent and selective irreversible antagonism of the A1 adenosine receptor when using in vitro biological preparations. However, FSCPX (44) suffers from cleavage of the ester linkage separating the reactive 4-(fluorosulfonyl)phenyl moiety from the xanthine pharmacophore when used in in vivo biological preparations or preparations containing significant enzyme activity, presumably by esterases. Cleavage of the ester linkage renders FSCPX (44) inactive in terms of irreversible receptor binding. In order to obtain an irreversible A1 adenosine receptor antagonist with improved stability, and to further elucidate the effects of linker structure on pharmacological characteristics, several FSCPX (44) analogues incorporating the chemoreactive 4-(fluorosulfonyl)phenyl moiety were targeted, where the labile ester linkage has been replaced by more stable functionalites. In particular, ether, alkyl, amide and ketone linkers were targeted, where the length of the alkyl chain was varied from between one to five atoms. Synthesis of the target compounds was achieved via direct attachment of the N-3 substituent to the xanthine. These compounds were then tested for their biological activity at the A1 adenosine receptor via their ability to irreversibly antagonise the binding of [3H]-8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX, ( 9) to the A1 adenosine receptor of DDT1 MF-2 cells. For comparison, the xanthines were also tested for their ability to inhibit the binding of [3H]-4-(2-[7-amino-2-{furyl} {1,2,4}- triazolo{2,3-a} {1,3,5}triazin-5-ylamino-ethyl)]phenol ([3H]ZM241385, 36) to the A2A adenosine receptor of PC-12 cells. The results suggest that the length and chemical composition of the linker separating the reactive 4-(fluorosulfonyl)phenyl moiety from the xanthine ring contribute to the potency and efficacy of the irreversible A1 adenosine receptor ligands. Like FSCPX (44, IC50 A1 = 11.8 nM), all derivatives possessed IC50 values in the low nM range under in vitro conditions. Compounds 94 (IC50 A1 = 165 nM), 95 (IC50 A1 = 112 nM) and 96 (IC50 A1 = 101 nM) possessing one, three and five methylene spacers within the linkage respectively, exhibited potent and selective binding to the A1 adenosine receptor versus the A2A adenosine receptor. Compound 94 did not exhibit any irreversible binding at A1 adenosine receptors, while 95 and 96 exhibit only weak irreversible binding at A1 adenosine receptors. Those compounds containing a benzylic carbonyl separating the 4-(fluorosulfonyl)phenyl moiety from the xanthine ring in the form of an amide (119, IC50 A1 = 24.9 nM, and 120, IC50 A1 = 21 nM) or ketone (151, IC50 A1 = 14 nM) proved to be the most potent, with compound 120 exhibiting the highest selectivity of 132-fold for the A receptor over the A2A receptor. compounds 119, 120 and 151 also strongly inhibited the binding of [3H]DPCPX irreversibly (82%, 83% and 78% loss of [3H]DPCPX binding at 100 nM respectively). compounds 120 and 151 are currently being evaluated for use in in vivo studies. Structure-activity studies suggest that altering the 8-cycloalkyl group of A1 selective xanthines for a 3-substituted or 2,3-disubstituted styryl, combined with N-7 methyl substitution will produce a compound with high affinity and selectivity for the A2A adenosine receptor over the A1 adenosine receptor. Compound 167 (IC50 A2A = 264 nM) possessing 8-(m-chloro)styryl substitution and the reactive 4-(fluorosulfonyl)phenyl moiety separated from the xanthine ring via an amide linker in the 3-position (as for 119 and 120), exhibited relatively potent binding to the A2A adenosine receptor of PC-12 cells, with a 16-fold selectivity for that receptor over the A1 adenosine receptor. However, compound 167 exhibited only very weak irreversible binding at A2A adenosine receptors. Overall, at this stage of biological testing, compound 120 appears to possess the most advantageous characteristics as an irreversible antagonist for the A1 adenosine receptor. This can be attributed to its high selectivity for the A1 adenosine receptor as compared to the A2A adenosine receptor. It also has relatively high potency for the A1 adenosine receptor, a concentration-dependent and selective inactivation of A1 adenosine receptors, and unbound ligand is easily removed (washed out) from biological membranes. These characteristics mean compound 151 has the potential to be a useful tool for the further study of the structure and function of the A1 adenosine receptor.