978 resultados para Bufo marinus - Cardiovascular system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research has established the presence of a natriuretic peptide system in the cardiovascular system of the toad, Bufo marinus. The presence of atrial natriuretic peptide mRNA and the peptide itself were shown in the heart which does not contain natriuretic peptide receptors in contrast to the large arteries and veins. In arteries these receptors mediated vasodilation. Atrial natriuretic peptide released from the heart may act on large arteries to regulate blood flow, but the action does not target the heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) are members of a family of hormones that play an important role in mammalian fluid and electrolyte balance. In the periphery, natriuretic peptides reduce blood volume and subsequently blood pressure by increasing renal natriuresis and diuresis and relaxation of vascular smooth muscle. The actions of natriuretic peptides are mediated via two membrane-linked guanylate cyclase receptors (NPR-GC); natriuretic peptide receptor-A (NPR-A) which has a high affinity for ANP and BNP; and natriuretic peptide receptor-B (NPR-B)which has the greatest affinity for CNP. A third receptor not linked to guanylate cyclase, natriuretic peptide receptor-C (NPR-C) also exists, which binds to ANP, BNP and CNP with a relatively equal affinity, and is involved with clearance of the peptides from the circulation and tissues. The natriuretic peptides are present in the brain and are particularly predominant in cardiovascular and fluid and electrolyte regulating areas such as the anteroventral third ventricle (AV3V) region. This distribution has led to the suggestion natriuretic peptides play a neuromodulatory role in the central control of fluid homeostasis. Natriuretic peptides in the brain have been observed to inhibit the release of other fluid and electrolyte regulating hormones such as arginine vasopressin (AVP) and angiotensin II (AII). Natriuretic peptides have also been identified in the non-mammalian vertebrates although information regarding the distribution of the peptides and their receptors in the non-mammalian brain is limited. In amphibians, immunohistochemical studies have shown that natriuretic peptides are highly concentrated in the preoptic region of the brain, an area believed to be analogous to the A\T3\ region in mammals, which suggests that natriuretic peptides may also be involved in central fluid and electrolyte regulation in amphibians. To date, CNP is the only natriuretic peptide that has been isolated and cloned from the lower vertebrate brain, although studies on the distribution of CNP binding sites in the brain have only been performed in one fish species. Studies on the distribution of ANP binding sites in the lower vertebrate brain are similarly limited and have only been performed in one fish and two amphibian species. Moreover, the nature and distribution of the natriuretic peptide receptors has not been characterised. The current study therefore, used several approaches to investigate the distribution of natriuretic peptides and their receptors in the brain of the amphibian Bufo marinus. The topographical relationship of natriuretic peptides and the fluid and electrolyte regulating hormone arginine vasotocin was also investigated, in order to gain a greater understanding of the role of the natriuretic peptide system in the lower vertebrate brain. Immunohistochemical studies showed natriuretic peptides were distributed throughout the brain and were highly concentrated in the preoptic region and interpeduncular nucleus. No natriuretic peptide-like immunoreactivity (NP-IR) was observed in the pituitary gland. Arginine vasotocin-like immunoreactivity (AvT-IR) was confined to distinct regions, particularly in the preoptic/hypothalamic region and pituitary gland. Double labelling studies of NP-JR and AvT-IR showed the peptides are not colocalised in the same neural pathways. The distribution of natriuretic peptide binding sites using the ligands 125I-rat ANP (125I-rANP) and 125I-porcine CNP (125I-pCNP) showed different distributions in the brain of B. marinus. The specificity of binding was determined by displacement with unlabelled rat ANP, porcine CNP and C-ANF, an NPR-C specific ligand. 125I-rANP binding sites were broadly distributed throughout the brain with the highest concentration in pituitary gland, habenular, medial pallium and olfactory region. Minimal 125I-rANP binding was observed in the preoptic region. Residual 125I-rANP binding in the presence of C-ANF was observed in the olfactory region, habenular and pituitary gland indicating the presence of both NPR-GC and NPR-C in these regions. 125I-pCNP binding was limited to the olfactory region, pallium and posterior pituitary gland. All 125I-pCNP binding was displaced by C-ANF which suggests that CNP in the brain of B. marinus binds only to NPR-C. Affinity cross-linking and SDS-PAGB demonstrated two binding sites at 136 kDa and 65 kDa under reducing conditions. Guanylate cyclase assays showed 0.1 µM ANP increased cGMP levels 50% above basal whilst a 10-fold higher concentration of CNP was required to produce the same result. Molecular cloning studies revealed a 669 base pair fragment showing 91% homology with human and rat NPR-A and 89% homology with human, rat and eel NPR-B. A 432 base pair fragment showing 67% homology to the mammalian NPR-C and 58% homology with eel NPR-D was also obtained. The results show natriuretic peptides and their receptors are distributed throughout the brain of B. marinus which indicates that natriuretic peptides may participate in a range of regulatory functions throughout the brain. The potential for natriuretic peptides to regulate the release of the fluid and electrolyte regulating hormone AVT also exists due to the high number of natriuretic peptide binding sites in the posterior pituitary gland. At least two populations of natriuretic peptide receptors are present in the brain of B. marinus, one linked to guanylate cyclase and one resembling the mammalian clearance receptor. Furthermore, autoradiography and guanylate cyclase studies suggest ANP may be the major ligand in the brain of B. marinus, even though CNP is the only natriuretic peptide that has been isolated from the lower vertebrate brain to date.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natriuretic peptide system is a family of related proteins that in humans function to reduce blood pressure and blood volume. However, in amphibians the function is less well understood. This thesis demonstrates that the amphibian, Bufo marinus, possesses a well-developed natriuretic peptide system that is capable of responding to changes induced by dehydration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) signalling pathways were examined in the lateral aortae and dorsal aorta of the cane toad Bufo marinus. NADPH diaphorase histochemistry and nitric oxide synthase (NOS) immunohistochemistry found no evidence for endothelial NOS in the endothelium of toad aortae, but it could be readily demonstrated in rat aorta that was used as a control. Immunohistochemistry using a specific neural NOS antibody showed the presence of neural NOS immunoreactivity in the perivascular nerves of the aortae. The anatomical data was supported by in vitro organ bath physiology, which demonstrated that the vasodilation mediated by applied acetylcholine (10-5 mol l-1) was not dependent on the presence of the vascular endothelium; however, it was significantly reduced in the presence of a neural NOS inhibitor, vinyl-L-NIO (10-4 mol l-1). In addition, atropine (10-6 mol l-1) (a muscarinic receptor inhibitor), L-NNA (10-4 mol l-1) (a NOS inhibitor) and ODQ (10-5 mol l-1) (an inhibitor of soluble guanylyl cyclase) abolished the vasodilatory effect of applied acetylcholine. In conclusion, we propose that an endothelial NO system is absent in toad aortae and that NO generated by neural NOS in perivascular nerves mediates vasodilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to localize and characterize natriuretic peptide binding sites in the urinary bladder of Bufo marinus and to then examine the effect of natriuretic peptides on the bladder vascular tone and water reabsorption in isolated perfused bladder preparations. Specific 125I-rat atrial natriuretic peptide (125I-rANP) binding sites were present on blood vessels, muscle, and epithelium. In tissue sections and/or isolated membranes, the binding was completely displaced by frog ANP, rat ANP, and porcine C-type natriuretic peptide (CNP; membranes only). However, a reduction in binding was observed after incubation with 125I-rANP and 1 μM of the natriuretic peptide receptor-C (NPR-C) ligand C-ANF, but residual binding remained suggesting the presence of two distinct binding sites. Electrophoresis of bladder membranes cross-linked to 125I-rANP identified two bands at approximately 70 and 140 kDa that correspond to the monomeric mass of NPR-C and the guanylate cyclase receptors, respectively. Furthermore, the presence of natriuretic peptide receptor-A and NPR-C mRNA in the bladder was demonstrated with reverse transcription–polymerase chain reaction. In addition, rat ANP, frog ANP, and porcine CNP stimulated a significant increase in cGMP generation in bladder membrane preparations, which indicated the presence of guanylate cyclase-linked receptors. In perfused bladder preparations, arginine vasotocin increased perfusion pressure and water permeability. The infusion of frog ANP or porcine CNP failed to alter perfusion pressure or water reabsorption in the presence or absence of arginine vasotocin. This study identified a well-developed natriuretic peptide receptor system in the urinary bladder of B. marinus but the function of the receptors remains unclear.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the nitric oxide (NO) control of the vascular smooth muscle of the ventral abdominal vein and vena cava of the toad, Bufo marinus, by using anatomical and physiological approaches. Nicotinamide adenine di-nucleotide phosphate-diaphorase histochemistry and immunohistochemistry using endothelial nitric oxide synthase (NOS) and neural NOS antibodies produced no evidence for endothelial NOS in the veins, but, neural NOS-immunoreactive perivascular nerves were present. Acetylcholine (10–5 M) caused a vasodilation in both veins that was endothelium-independent, and which was blocked by the soluble guanylyl cyclase inhibitor, ODQ (10–5 M). The NOS inhibitors, L-NNA (10–4 M) and L-NAME (10–4 M), did not significantly reduce the vasodilatory effect of acetylcholine in the veins; this suggested that the vasodilation was not due to NO. However, in the presence of phenoxybenzamine (10–7–10–8 M), L-NNA significantly reduced the vasodilatory effect of acetylcholine in the veins. This unusual response is due to phenoxybenzamine partially inactivating the muscarinic receptor pool in the veins. In addition, the neural NOS inhibitor, vinyl-L-NIO (10–5 M), significantly reduced the acetylcholine-mediated vasodilation in the presence of phenoxybenzamine. The results show that in toad veins, nitrergic nerves rather than an endothelial NO system are involved in NO-mediated vasodilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the role of nitric oxide (NO) in regulation of the pulmocutaneous vasculature of the toad, Bufo marinus was investigated. In vitro myography demonstrated the presence of a neural NO signaling mechanism in both arteries. Vasodilation induced by nicotine was inhibited by the soluble guanylyl cyclase (GC) inhibitor, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one, and the NO synthase (NOS) inhibitor, Nω-nitro-L-arginine (L-NNA). Removal of the endothelium had no significant effect on the vasodilation. Furthermore, pretreatment with N5-(1-imino-3-butenyl)-L-ornithine (vinyl-L-NIO), a more specific inhibitor of neural NOS, caused a significant decrease in the nicotine-induced dilation. In the pulmonary artery only, a combination of L-NNA and the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP(8-37), completely blocked the nicotine-induced dilation. In both arteries, the vasodilation was also significantly decreased by glibenclamide, an ATP-sensitive K+ (K+ATP) channel inhibitor. Levcromakalim, a K+ATP channel opener, caused a dilation that was blocked by glibenclamide in both arteries. In the pulmonary artery, NO donor-mediated dilation was significantly decreased by pretreatment with glibenclamide. The physiological data were supported by NADPH-diaphorase histochemistry and immunohistochemistry, which demonstrated NOS in perivascular nerve fibers but not the endothelium of the arteries. These results indicate that the pulmonary and cutaneous arteries of B. marinus are regulated by NO from nitrergic nerves rather than NO released from the endothelium. The nitrergic vasodilation in the arteries appears to be caused, in part, via activation of K+ATP channels. Thus, NO could play an important role in determining pulmocutaneous blood flow and the magnitude of cardiac shunting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natriuretic peptide system of mammals is important in the control of blood volume but its function in non-mammalian animals is unclear. This study identified a functional natriuretic peptide system in an amphibian and showed that the hormones are involved in the control of fluid balance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study determined the role of nitric oxide (NO) in neurogenic vasodilation in mesenteric resistance arteries of the toad Bufo marinus. NO synthase (NOS) was anatomically demonstrated in perivascular nerves, but not in the endothelium. ACh and nicotine caused TTX-sensitive neurogenic vasodilation of mesenteric arteries. The ACh-induced vasodilation was endothelium-independent and was mediated by the NO/soluble guanylyl cyclase signaling pathway, inasmuch as the vasodilation was blocked by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and the NOS inhibitors Nω- nitro-L-arginine methyl ester and Nω-nitro-L-arginine. Furthermore, the ACh-induced vasodilation was significantly decreased by the more selective neural NOS inhibitor N5-(1-imino-3-butenyl)-L-ornithine. The nicotine-induced vasodilation was endothelium-independent and mediated by NO and calcitonin gene-related peptide (CGRP), inasmuch as pretreatment of mesenteric arteries with a combination of Nω-nitro-L-arginine and the CGRP receptor antagonist CGRP-(8–37) blocked the vasodilation. Clotrimazole significantly decreased the ACh-induced response, providing evidence that a component of the NO vasodilation involved Ca2+-activated K+ or voltage-gated K+ channels. These data show that NO control of mesenteric resistance arteries of toad is provided by nitrergic nerves, rather than the endothelium, and implicate NO as a potentially important regulator of gut blood flow and peripheral blood pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract
Thiazolidinediones (TZDs) have been used for the treatment of hyperglycaemia in type 2 diabetes for the past 10 years. They may delay the development of type 2 diabetes in individuals at high risk of developing the condition, and have been shown to have potentially beneficial effects on cardiovascular risk factors. TZDs act as agonists of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) primarily in adipose tissue. PPAR-gamma receptor activation by TZDs improves insulin sensitivity by promoting fatty acid uptake into adipose tissue, increasing production of adiponectin and reducing levels of inflammatory mediators such as tumour necrosis factor-alpha (TNF-alpha), plasminogen activator inhibitor-1(PAI-1) and interleukin-6 (IL-6). Clinically, TZDs have been shown to reduce measures of atherosclerosis such as carotid intima-media thickness (CIMT). However, in spite of beneficial effects on markers of cardiovascular risk, TZDs have not been definitively shown to reduce cardiovascular events in patients, and the safety of rosiglitazone in this respect has recently been called into question. Dual PPAR-alpha/gamma agonists may offer superior treatment of insulin resistance and cardioprotection, but their safety has not yet been assured