705 resultados para Blooms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programs. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulfide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection of dense harmful algal blooms (HABs) by satellite remote sensing is usually based on analysis of chlorophyll-a as a proxy. However, this approach does not provide information about the potential harm of bloom, nor can it identify the dominant species. The developed HAB risk classification method employs a fully automatic data-driven approach to identify key characteristics of water leaving radiances and derived quantities, and to classify pixels into “harmful”, “non-harmful” and “no bloom” categories using Linear Discriminant Analysis (LDA). Discrimination accuracy is increased through the use of spectral ratios of water leaving radiances, absorption and backscattering. To reduce the false alarm rate the data that cannot be reliably classified are automatically labelled as “unknown”. This method can be trained on different HAB species or extended to new sensors and then applied to generate independent HAB risk maps; these can be fused with other sensors to fill gaps or improve spatial or temporal resolution. The HAB discrimination technique has obtained accurate results on MODIS and MERIS data, correctly identifying 89% of Phaeocystis globosa HABs in the southern North Sea and 88% of Karenia mikimotoi blooms in the Western English Channel. A linear transformation of the ocean colour discriminants is used to estimate harmful cell counts, demonstrating greater accuracy than if based on chlorophyll-a; this will facilitate its integration into a HAB early warning system operating in the southern North Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air–sea dimethylsulfide (DMS) fluxes and bulk air–sea gradients were measured over the Southern Ocean in February–March 2012 during the Surface Ocean Aerosol Production (SOAP) study. The cruise encountered three distinct phytoplankton bloom regions, consisting of two blooms with moderate DMS levels, and a high biomass, dinoflagellate-dominated bloom with high seawater DMS levels (> 15 nM). Gas transfer coefficients were considerably scattered at wind speeds above 5 m/s. Bin averaging the data resulted in a linear relationship between wind speed and mean gas transfer velocity consistent with that previously observed. However, the wind-speed-binned gas transfer data distribution at all wind speeds is positively skewed. The flux and seawater DMS distributions were also positively skewed, which suggests that eddy covariance-derived gas transfer velocities are consistently influenced by additional, log-normal noise. A flux footprint analysis was conducted during a transect into the prevailing wind and through elevated DMS levels in the dinoflagellate bloom. Accounting for the temporal/spatial separation between flux and seawater concentration significantly reduces the scatter in computed transfer velocity. The SOAP gas transfer velocity data show no obvious modification of the gas transfer–wind speed relationship by biological activity or waves. This study highlights the challenges associated with eddy covariance gas transfer measurements in biologically active and heterogeneous bloom environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally occurring red tides and harmful algal blooms (HABs) are of increasing importance in the coastal environment and can have dramatic effects on coastal benthic and epipelagic communities worldwide. Such blooms are often unpredictable, irregular or of short duration, and thus determining the underlying driving factors is problematic. The dinoflagellate Karenia mikimotoi is an HAB, commonly found in the western English Channel and thought to be responsible for occasional mass finfish and benthic mortalities. We analysed a 19-year coastal time series of phytoplankton biomass to examine the seasonality and interannual variability of K. mikimotoi in the western English Channel and determine both the primary environmental drivers of these blooms as well as the effects on phytoplankton productivity and oxygen conditions. We observed high variability in timing and magnitude of K. mikimotoi blooms, with abundances reaching >1000 cells mL�1 at 10 m depth, inducing up to a 12-fold increase in the phytoplankton carbon content of the water column. No long-term trends in the timing or magnitude of K. mikimotoi abundance were evident from the data. Key driving factors were identified as persistent summertime rainfall and the resultant input of low-salinity high-nutrient river water. The largest bloom in 2009 was associated with highest annual primary production and led to considerable oxygen depletion at depth, most likely as a result of enhanced biological breakdown of bloom material; however, this oxygen depletion may not affect zooplankton. Our data suggests that K. mikimotoi blooms are not only a key and consistent feature of western English Channel productivity, but importantly can potentially be predicted from knowledge of rainfall or river discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) can cause sudden and considerable losses to fish farms, for example 500,000 salmon during one bloom in Shetland, and also present a threat to human health. Early warning allows the industry to take protective measures. PML's satellite monitoring of HABs is now funded by the Scottish aquaculture industry. The service involves processing EO ocean colour data from NASA and ESA in near-real time, and applying novel techniques for discriminating certain harmful blooms from harmless algae. Within the AQUA-USERS project we are extending this capability to further HAB species within several European countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyzed a mathematical model of algal-grazer dynamics, including the effect of colony formation, which is an example of phenotypic plasticity. The model consists of three variables, which correspond to the biomasses of unicellular algae, colonial algae, and herbivorous zooplankton. Among these organisms, colonial algae are the main components of algal blooms. This aquatic system has two stable attractors, which can be identified as a zooplankton-dominated (ZD) state and an algal-dominated (AD) state, respectively. Assuming that the handling time of zooplankton on colonial algae increases with the colonial algae biomass, we discovered that bistability can occur within the model system. The applicability of alternative stable states in algae-grazer dynamics as a framework for explaining the algal blooms in real lake ecosystems, thus, seems to depend on whether the assumption mentioned above is met in natural circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reports of nuisance jellyfish blooms have increased worldwide during the last half-century, but the possible causes remain unclear.Apersistent difficulty lies in identifying whether blooms occur owing to local or regional processes. This issue can be resolved, in part, by establishing the geographical scales of connectivity among locations, which may be addressed using genetic analyses and oceanographic modelling. We used landscape genetics and Lagrangian modelling of oceanographic dispersal to explore patterns of connectivity in the scyphozoan jellyfish Rhizostoma octopus, which occurs en masse at locations in the Irish Sea and northeastern Atlantic. We found significant genetic structure distinguishing three populations, with both consistencies and inconsistencies with prevailing physical oceanographic patterns. Our analyses identify locations where blooms occur in apparently geographically isolated populations, locations where blooms may be the source or result of migrants, and a location where blooms do not occur consistently and jellyfish are mostly immigrant. Our interdisciplinary approach thus provides a means to ascertain the geographical origins of jellyfish in outbreaks, which may have wide utility as increased international efforts investigate jellyfish blooms. © 2013 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jellyfish are often considered as stressors on marine ecosystems or as indicators of highly perturbed systems. Far less attention is given to the potential of such species to provide beneficial ecosystem services in their own right. In an attempt to redress this imbalance we take the liberty of portraying jellyfish in a positive light and suggest that the story is not entirely one of doom and gloom. More specifically, we outline how gelatinous marine species contribute to the four categories of ecosystem services (regulating, supporting, provisioning and cultural) defined by the Millennium Ecosystem Assessment. This discussion ranges from the role of jellyfish in carbon capture and advection to the deep ocean through to the creation of micro habitat for developing fishes and the advancement of citizen science programmes. Attention is paid also to incorporation of gelatinous species into fisheries or ecosystem level models and the mechanisms by which we can improve the transfer of information between jellyfish researchers and the wider non-specialist community.