932 resultados para Blood-brain-barrier


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homeostasis within the central nervous system (CNS) is a prerequisite to elicit proper neuronal function. The CNS is tightly sealed from the changeable milieu of the blood stream by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB). Whereas the BBB is established by specialized endothelial cells of CNS microvessels, the BCSFB is formed by the epithelial cells of the choroid plexus. Both constitute physical barriers by a complex network of tight junctions (TJs) between adjacent cells. During many CNS inflammatory disorders, such as multiple sclerosis, human immunodeficiency virus infection, or Alzheimer's disease, production of pro-inflammatory cytokines, matrix metalloproteases, and reactive oxygen species are responsible for alterations of CNS barriers. Barrier dysfunction can contribute to neurological disorders in a passive way by vascular leakage of blood-borne molecules into the CNS and in an active way by guiding the migration of inflammatory cells into the CNS. Both ways may directly be linked to alterations in molecular composition, function, and dynamics of the TJ proteins. This review summarizes current knowledge on the cellular and molecular aspects of the functional and dysfunctional TJ complexes at the BBB and the BCSFB, with a particular emphasis on CNS inflammation and the role of reactive oxygen species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical and experimental evidence indicates that inflammatory processes contribute to the pathophysiology of epilepsy, but underlying mechanisms remain mostly unknown. Using immunohistochemistry for CD45 (common leukocyte antigen) and CD3 (T-lymphocytes), we show here microglial activation and infiltration of leukocytes in sclerotic tissue from patients with mesial temporal lobe epilepsy (TLE), as well as in a model of TLE (intrahippocampal kainic acid injection), characterized by spontaneous, nonconvulsive focal seizures. Using specific markers of lymphocytes, microglia, macrophages, and neutrophils in kainate-treated mice, we investigated with pharmacological and genetic approaches the contribution of innate and adaptive immunity to kainate-induced inflammation and neurodegeneration. Furthermore, we used EEG analysis in mutant mice lacking specific subsets of lymphocytes to explore the significance of inflammatory processes for epileptogenesis. Blood-brain barrier disruption and neurodegeneration in the kainate-lesioned hippocampus were accompanied by sustained ICAM-1 upregulation, microglial cell activation, and infiltration of CD3(+) T-cells. Moreover, macrophage infiltration was observed, selectively in the dentate gyrus where prominent granule cell dispersion was evident. Unexpectedly, depletion of peripheral macrophages by systemic clodronate liposome administration affected granule cell survival. Neurodegeneration was aggravated in kainate-lesioned mice lacking T- and B-cells (RAG1-knock-out), because of delayed invasion by Gr-1(+) neutrophils. Most strikingly, these mutant mice exhibited early onset of spontaneous recurrent seizures, suggesting a strong impact of immune-mediated responses on network excitability. Together, the concerted action of adaptive and innate immunity triggered locally by intrahippocampal kainate injection contributes seizure-suppressant and neuroprotective effects, shedding new light on neuroimmune interactions in temporal lobe epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During vertebrate development, the lung inaugurates as an endodermal bud from the primitive foregut. Dichotomous subdivision of the bud results in arborizing airways that form the prospective gas exchanging chambers, where a thin blood-gas barrier (BGB) is established. In the mammalian lung, this proceeds through conversion of type II cells to type I cells, thinning, and elongation of the cells as well as extrusion of the lamellar bodies. Subsequent diminution of interstitial tissue and apposition of capillaries to the alveolar epithelium establish a thin BGB. In the noncompliant avian lung, attenuation proceeds through cell-cutting processes that result in remarkable thinning of the epithelial layer. A host of morphoregulatory molecules, including transcription factors such as Nkx2.1, GATA, HNF-3, and WNT5a; signaling molecules including FGF, BMP-4, Shh, and TFG- β and extracellular proteins and their receptors have been implicated. During normal physiological function, the BGB may be remodeled in response to alterations in transmural pressures in both blood capillaries and airspaces. Such changes are mitigated through rapid expression of the relevant genes for extracellular matrix proteins and growth factors. While an appreciable amount of information regarding molecular control has been documented in the mammalian lung, very little is available on the avian lung.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tall epithelium of the developing chick embryo lung is converted to a squamous one, which participates in formation of the thin blood-gas barrier. We show that this conversion occurred through processes resembling exocrine secretion. Initially, cells formed intraluminal protrusions (aposomes), and then transcellular double membranes were established. Gaps between the membranes opened, thus, severing the aposome from the cell. Alternatively, aposomes were squeezed out by adjacent cells or were spontaneously constricted and extruded. As a third mechanism, formation and fusion of severed vesicles or vacuoles below the aposome and their fusion with the apicolateral plasma membrane resulted in severing of the aposome. The atria started to form by progressive epithelial attenuation and subsequent invasion of the surrounding mesenchyme at regions delineated by subepithelial alpha-smooth muscle actin-positive cells. Further epithelial attenuation was achieved by vacuolation; rupture of such vacuoles with resultant numerous microfolds and microvilli, which were abscised to accomplish a smooth squamous epithelium just before hatching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adverse outcome in bacterial meningitis is associated with the breakdown of the blood-brain barrier (BBB). Matrix-metalloproteinases (MMPs) facilitate this process by degradation of components of the BBB. This in turn results in acute complications of bacterial meningitis including edema formation, increased intracranial pressure and subsequent ischemia. We determined the parenchymal balance of MMP-9 and TIMP-1 (tissue inhibitor of MMP) and the structural integrity of the BBB in relation to cortical damage in an infant rat model of pneumococcal meningitis. The data demonstrate that the extent of cortical damage is significantly associated with parenchymal gelatinolytic activity and collagen type IV degradation. The increased gelatinolysis was found to be associated with a brain parenchymal imbalance of MMP-9/TIMP-1. These findings provide support to the concept that MMPs mediated disruption of the BBB contributes to the pathogenesis of bacterial meningitis and that protection of the vascular unit may have neuroprotective potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial meningitis is characterized by an inflammatory reaction to the invading pathogens that can ultimately lead to sensorineural hearing loss, permanent brain injury, or death. The matrix metalloproteinases (MMPs) and tumor necrosis factor alpha-converting enzyme (TACE) are key mediators that promote inflammation, blood-brain barrier disruption, and brain injury in bacterial meningitis. Doxycycline is a clinically used antibiotic with anti-inflammatory effects that lead to reduced cytokine release and the inhibition of MMPs. Here, doxycycline inhibited TACE with a 50% inhibitory dose of 74 microM in vitro and reduced the amount of tumor necrosis factor alpha released into the cerebrospinal fluid by 90% in vivo. In an infant rat model of pneumococcal meningitis, a single dose of doxycycline (30 mg/kg) given as adjuvant therapy in addition to ceftriaxone 18 h after infection significantly reduced the mortality, the blood-brain barrier disruption, and the extent of cortical brain injury. Adjuvant doxycycline (30 mg/kg given subcutaneously once daily for 4 days) also attenuated hearing loss, as assessed by auditory brainstem response audiometry, and neuronal death in the cochlear spiral ganglion at 3 weeks after infection. Thus, doxycycline, probably as a result of its anti-inflammatory properties, had broad beneficial effects in the brain and the cochlea and improved survival in this model of pneumococcal meningitis in infant rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excessive erythrocytosis results in severely increased blood viscosity, which may have significant detrimental effects on endothelial cells and, ultimately, function of the vascular endothelium. Because blood-brain barrier stability is crucial for normal physiological function, we used our previously characterized erythropoietin-overexpressing transgenic (tg6) mouse line (which has a hematocrit of 0.8-0.9) to investigate the effect of excessive erythrocytosis on vessel number, structure, and integrity in vivo. These mice have abnormally high levels of nitric oxide (NO), a potent proinflammatory molecule, suggesting altered vascular permeability and function. In this study, we observed that brain vessel density of tg6 mice was significantly reduced (16%) and vessel diameter was significantly increased (15%) compared with wild-type mice. Although no significant increases in vascular permeability under normoxic or acute hypoxic conditions (8% O2 for 4 h) were detected, electron-microscopic analysis revealed altered morphological characteristics of the tg6 endothelium. Tg6 brain vascular endothelial cells appeared to be activated, with increased luminal protrusions reminiscent of ongoing inflammatory processes. Consistent with this observation, we detected increased levels of intercellular adhesion molecule-1 and von Willebrand factor, markers of endothelial activation and damage, in brain tissue. We propose that chronic excessive erythrocytosis and sustained high hematocrit cause endothelial damage, which may, ultimately, increase susceptibility to vascular disease.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month-old rats following supplementation with the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of alpha- and gamma-tocopherols and glutathione (GSH) were also higher. In contrast, the brain displayed unaltered levels of the tocopherols and GSH. Malondialdehyde (MDA) level was also higher in the cerebrospinal fluid (CSF) and the liver but not in the brain. In old rats, the absence of an increase in iron concentration in the brain was reflected by unaltered concentrations of GSH, tocopherols, and MDA as compared to that in untreated rats. In the aging liver, concentrations of GSH and MDA increased with TMHF treatment. Morphological studies revealed unaltered levels of iron, ferritin, heme oxygenase-1 (HO-1), nitrotyrosine (NT), or MDA in the brains of both young and old rats treated with TMHF. In contrast, TMHF treatment increased the level of HO-1 in Kupffer cells, NT in hepatic endothelial cells, and MDA and ferritin in hepatocytes. Although these results demonstrated an increase in the biochemical markers of oxidative stress and damage in response to increasing concentrations of iron in the liver, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Pulmonary inflammation after cardiac surgery with cardiopulmonary bypass (CPB) has been linked to respiratory dysfunction and ultrastructural injury. Whether pretreatment with methylprednisolone (MP) can preserve pulmonary surfactant and blood-air barrier, thereby improving pulmonary function, was tested in a porcine CPB-model. MATERIALS AND METHODS: After randomizing pigs to placebo (PLA; n = 5) or MP (30 mg/kg, MP; n = 5), animals were subjected to 3 h of CPB with 1 h of cardioplegic cardiac arrest. Hemodynamic data, plasma tumor necrosis factor-alpha (TNF-alpha, ELISA), and pulmonary function parameters were assessed before, 15 min after CPB, and 8 h after CPB. Lung biopsies were analyzed for TNF-alpha (Western blot) or blood-air barrier and surfactant morphology (electron microscopy, stereology). RESULTS: Systemic TNF-alpha increased and cardiac index decreased at 8 h after CPB in PLA (P < 0.05 versus pre-CPB), but not in MP (P < 0.05 versus PLA). In both groups, at 8 h after CPB, PaO(2) and PaO(2)/FiO(2) were decreased and arterio-alveolar oxygen difference and pulmonary vascular resistance were increased (P < 0.05 versus baseline). Postoperative pulmonary TNF-alpha remained unchanged in both groups, but tended to be higher in PLA (P = 0.06 versus MP). The volume fraction of inactivated intra-alveolar surfactant was increased in PLA (58 +/- 17% versus 83 +/- 6%) and MP (55 +/- 18% versus 80 +/- 17%) after CPB (P < 0.05 versus baseline for both groups). Profound blood-air barrier injury was present in both groups at 8 h as indicated by an increased blood-air barrier integrity score (PLA: 1.28 +/- 0.03 versus 1.70 +/- 0.1; MP: 1.27 +/- 0.08 versus 1.81 +/- 0.1; P < 0.05). CONCLUSION: Despite reduction of the systemic inflammatory response and pulmonary TNF-alpha generation, methylprednisolone fails to decrease pulmonary TNF-alpha and to preserve pulmonary surfactant morphology, blood-air barrier integrity, and pulmonary function after CPB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major aim in lung transplantation is to prevent the loss of structural integrity due to ischemia and reperfusion (I/R) injury. Preservation solutions protect the lung against I/R injury to a variable extent. We compared the influence of two extracellular-type preservation solutions (Perfadex, or PX, and Celsior, or CE) on the morphological alterations induced by I/R. Pigs were randomly assigned to sham (n = 4), PX (n = 5), or CE (n = 2) group. After flush perfusion with PX or CE, donor lungs were excised and stored for 27 hr at 4 degrees C. The left donor lung was implanted into the recipient, reperfused for 6 hr, and, afterward, prepared for light and electron microscopy. Intra-alveolar, septal, and peribronchovascular edema as well as the integrity of the blood-air barrier were determined stereologically. Intra-alveolar edema was more pronounced in CE (219.80 +/- 207.55 ml) than in PX (31.46 +/- 15.75 ml). Peribronchovascular (sham: 13.20 +/- 4.99 ml; PX: 15.57 +/- 5.53 ml; CE: 31.56 +/- 5.78 ml) and septal edema (thickness of alveolar septal interstitium, sham: 98 +/- 33 nm; PX: 84 +/- 8 nm; CE: 249 +/- 85 nm) were only found in CE. The blood-air barrier was similarly well preserved in sham and PX but showed larger areas of swollen and fragmented epithelium or endothelium in CE. The present study shows that Perfadex effectively prevents intra-alveolar, septal, and peribronchovascular edema formation as well as injury of the blood-air barrier during I/R. Celsior was not effective in preserving the lung from morphological I/R injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Before entering the central nervous system (CNS) immune cells have to penetrate any one of its barriers, namely either the endothelial blood-brain barrier, the epithelial blood-cerebrospinal fluid barrier or the tanycytic barrier around the circumventricular organs, all of which maintain homeostasis within the CNS. The presence of these barriers in combination with the lack of lymphatic vessels and the absence of classical MHC-positive antigen presenting cells characterizes the CNS as an immunologically privileged site. In multiple sclerosis a large number of inflammatory cells gains access to the CNS parenchyma. Studies performed in experimental autoimmune encephalomyelitis (EAE), a rodent model for multiple sclerosis, have enabled us to understand some of the molecular mechanisms involved in immune cell entry into the CNS. In particular, the realization that /alpha4-integrins play a predominant role in leukocyte trafficking to the CNS has led to the development of a novel drug for the treatment of relapsing-remitting multiple sclerosis, which targets /alpha4-integrin mediated immune cell migration to the CNS. At the same time, the involvement of other adhesion and signalling molecules in this process remains to be investigated and novel molecules contributing to immune cell entry into the CNS are still being identified. The entire process of immune cell trafficking into the CNS is strictly controlled by the brain barriers not only under physiological conditions but also during neuroinflammation, when some barrier properties are lost. Thus, immune cell entry into the CNS critically depends on the unique characteristics of the brain barriers maintaining CNS homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a paucity of therapies for most neurological disorders--from rare lysosomal storage diseases to major public health concerns such as stroke and Alzheimer's disease. Advances in the targeting of drugs to the CNS are essential for the future success of neurotherapeutics; however, the delivery of many potentially therapeutic and diagnostic compounds to specific areas of the brain is restricted by the blood-brain barrier, the blood-CSF barrier, or other specialised CNS barriers. These brain barriers are now recognised as a major obstacle to the treatment of most brain disorders. The challenge to deliver therapies to the CNS is formidable, and the solution will require concerted international efforts among academia, government, and industry. At a recent meeting of expert panels, essential and high-priority recommendations to propel brain barrier research forward in six topical areas were developed and these recommendations are presented here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ABO blood group system until recently constituted an insuperable barrier for solid organ transplantation, but cases of heart transplantation in infants and kidney transplantation in adults have been reported, wherein ABO-incompatible grafts have been successful. In 1990, the molecular genetic basis of three major alleles at the ABO locus was elucidated; A and B glycosyltransferases are specified by a variety of functional alleles at this locus. The antibody response to ABH antigens, namely, naturally occurring anti-A/B IgM and IgG isotype agglutinins, are controlled preoperatively by recipient conditioning using plasma exchange, immunoadsorption, and immunosuppressive regimens. We report an O-type patient who accidentally received a B-type cardiac allograft in 1997 who survived for 5 years, dying for an unrelated reason. Over a period of 45 months semiquantitatively we monitored the expression of ABO-type antigens in graft heart vessels using monoclonal antibodies on sections of formalin-fixed, paraffin-embedded biopsies. We observed a progressive change in the antigenic profile of graft endothelial cells from B- to O-type, which was first detected at 1 year posttransplant and most prominent 3 years later, the end of the observation period. No temporal relationship was observed between the transition from B to O expression, the anti-B antibody levels or the immunosuppressive regimen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant human erythropoietin (EPO) has been successfully tested as neuroprotectant in brain injury models. The first large clinical trial with stroke patients, however, revealed negative results. Reasons are manifold and may include side-effects such as thrombotic complications or interactions with other medication, EPO concentration, penetration of the blood-brain-barrier and/or route of application. The latter is restricted to systemic application. Here we hypothesize that EPO is neuroprotective in a rat model of acute subdural hemorrhage (ASDH) and that direct cortical application is a feasible route of application in this injury type. The subdural hematoma was surgically evacuated and EPO was applied directly onto the surface of the brain. We injected NaCl, 200, 2000 or 20,000IU EPO per rat i.v. at 15min post-ASDH (400μl autologous venous blood) or NaCl, 0.02, 0.2 or 2IU per rat onto the cortical surface after removal of the subdurally infused blood t at 70min post-ASDH. Arterial blood pressure (MAP), blood chemistry, intracranial pressure (ICP), cerebral blood flow (CBF) and brain tissue oxygen (ptiO2) were assessed during the first hour and lesion volume at 2days after ASDH. EPO 20,000IU/rat (i.v.) elevated ICP significantly. EPO at 200 and 2000IU reduced lesion volume from 38.2±0.6mm(3) (NaCl-treated group) to 28.5±0.9 and 22.2±1.3mm(3) (all p<0.05 vs. NaCl). Cortical application of 0.02IU EPO after ASDH evacuation reduced injury from 36.0±5.2 to 11.2±2.1mm(3) (p=0.007), whereas 0.2IU had no effect (38.0±9.0mm(3)). The highest dose of both application routes (i.v. 20,000IU; cortical 2IU) enlarged the ASDH-induced damage significantly to 46.5±1.7 and 67.9±10.4mm(3) (all p<0.05 vs. NaCl). In order to test whether Tween-20, a solvent of EPO formulation 'NeoRecomon®' was responsible for adverse effects two groups were treated with NaCl or Tween-20 after the evacuation of ASDH, but no difference in lesion volume was detected. In conclusion, EPO is neuroprotective in a model of ASDH in rats and was most efficacious at a very low dose in combination with subdural blood removal. High systemic and topically applied concentrations caused adverse effects on lesion size which were partially due to increased ICP. Thus, patients with traumatic ASDH could be treated with cortically applied EPO but with caution concerning concentration.