974 resultados para Bladder cancer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Animal models are important for pre-clinical assessment of novel therapies in metastatic bladder cancer. The F344/AY-27 model involves orthotopic colonisation with AY-27 tumour cells which are syngeneic to F344 rats. One disadvantage of the model is the unknown status of colonisation between instillation and sacrifice. Non-invasive optical imaging using red fluorescence reporters could potentially detect tumours in situ and would also reduce the number of animals required for each experiment.

MATERIALS AND METHODS: AY-27 cells were stably transfected with either pDsRed2-N1 or pcDNA3.1tdTomato. The intensity and stability of fluorescence in the resultant AY-27/DsRed2-N1 and AY-27/tdTomato stable cell lines were compared using Xenogen IVIS®200 and Olympus IX51 systems.

RESULTS: AY-27/tdTomato fluorescence intensity was 60-fold brighter than AY-27/DsRed2-N1 and was sustained in AY-27/tdTomato cells following freezing and six subsequent sub-cultures. After sub-cutaneous injection, fluorescence intensity from AY-27/tdTomato cells was threefold stronger than that detected from AY-27/DsRed2-N1 cells. IVIS®200 detected fluorescence from AY-27/tdTomato and AY-27/DsRed2-N1 cells colonising resected and exteriorised bladders, respectively. However, the deep-seated position of the bladder precluded in vivo imaging. Characteristics of AY-27/tdTomato cells in vitro and in tumours colonising F344 rats resembled those of parental AY-27 cells. Tumour transformation was observed in the bladders colonised with AY-27/DsRed2-N1 cells.

CONCLUSIONS: In vivo whole-body imaging of internal red fluorescent animal tumours should use pcDNA3.1tdTomato rather than pDsRed2-N1. Optical imaging of deep-seated organs in larger animals remains a challenge which may require proteins with brighter red or far-red fluorescence and/or alternative approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterized Fas immunoreactivity, functionality and its role in the response to mitomycin-C (MMC) chemotherapy in vitro in cell lines and in vivo in bladder washings from 23 transitional cell carcinoma of the bladder (TCCB) patients, harvested prior to and during MMC intravesical treatment. Having established the importance of functional Fas, we investigated the methylation and exon 9 mutation as mechanisms of Fas silencing in TCCB. For the first time, we report p53 up-regulation in 9/14 and Fas up-regulation in 7/9 TCCB patients during intravesical MMC treatment. Fas immunoreactivity was strong in the TCCB cell line T24 and in 17/20 (85%) tumor samples from patients with advanced TCCB. T24 and HT1376 cells were resistant to MMC and recombinant Fas ligand, whilst RT4 cells were responsive to Fas ligand and MMC. Using RT4 cells as a model, siRNA targeting p53 significantly reduced MMC-induced p53 and Fas up-regulation and stable DN-FADD transfection decreased MMC-induced apoptosis, suggesting that functional Fas enhances chemotherapy responses in a p53-dependent manner. In HT1376 cells, 5-aza-2-deoxycytidine (12 µM) induced Fas immunoreactivity and reversed methylation at CpG site -548 within the Fas promoter. This site was methylated in 13/24 (54%) TCCB patient samples assessed using Methylation-Specific Polymerase Chain Reaction. There was no methylation at either the p53 enhancer region within the first intron or at the SP-1 binding region in the promoter and no mutation within exon 9 in tumor DNA extracted from 38 patients. Methylation at CpG site -548 is a potential target for demethylating drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: We appraised 23 biomarkers previously associated with urothelial cancer in a case-control study. Our aim was to determine whether single biomarkers and/or multivariate algorithms significantly improved on the predictive power of an algorithm based on demographics for prediction of urothelial cancer in patients presenting with hematuria. METHODS: Twenty-two biomarkers in urine and carcinoembryonic antigen (CEA) in serum were evaluated using enzyme-linked immunosorbent assays (ELISAs) and biochip array technology in 2 patient cohorts: 80 patients with urothelial cancer, and 77 controls with confounding pathologies. We used Forward Wald binary logistic regression analyses to create algorithms based on demographic variables designated prior predicted probability (PPP) and multivariate algorithms, which included PPP as a single variable. Areas under the curve (AUC) were determined after receiver-operator characteristic (ROC) analysis for single biomarkers and algorithms. RESULTS: After univariate analysis, 9 biomarkers were differentially expressed (t test; P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To discuss the role of apoptosis, gene directed self-destruction of a cell, in the response of transitional cell carcinoma of the bladder cells to chemotherapy. Methods: A directed MEDLINE literature search of apoptosis, bladder cancer and chemotherapy was performed to extract the relevant information, which was reviewed. The characteristics of apoptotic cells were defined and the methods in common use to detect these traits were described. The role of the key mediators of the apoptotic process in bladder cancer is discussed in the context of chemosensitivity and stage of disease. The importance of induction of apoptosis post chemotherapy is highlighted. Results: On stimulus by appropriate external or internal signals, a cell may alter the expression of genes coding for proteins associated with the apoptotic process. The development of apoptosis depends on the balance between pro- and anti- apoptotic proteins. Key alterations in genes and proteins related to apoptosis within bladder cancer result in a shift away from an ability to undergo apoptosis towards a cell with increased survival properties that is chemoresistant. Conclusions: Much current research in bladder cancer is aimed at restoring chemosensitivity by shifting the balance in a cell towards a pro-apoptotic phenotype. Successful translation of this work into clinical practice may improve survival in patients in whom prognosis is currently poor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To develop an epirubicin-loaded, water-soluble mucoadhesive gels that have the correct rheological properties to facilitate their delivery into the bladder via a catheter, while allowing for their spread across the bladder wall with limited expansion of the bladder and increasing the retention of epirubicin in the bladder and flushing with urine.

Methods: Epirubicin-loaded hydroxyl ethyl cellulose (HEC) and hydroxy propyl methyl cellulose (HPMC) gels were manufactured and tested for their rheological properties. Their ability to be pushed through a catheter was also assessed as was their in-vitro drug release, spreading in a bladder and retention of epirubicin after flushing with simulated urine.

Key findings: Epirubicin drug release was viscosity-dependent. The 1 and 1.5% HEC gels and the 1, 1.5 and 2% HPMC gels had the correct viscosity to be administered through a model catheter and spread evenly across the bladder wall under the pressure of the detrusor muscle. The epirubicin-loaded gels had an increased retention time in the bladder when compared with a standard intravesical solution of epirubicin, even after successive flushes with simulated urine.

Conclusion: The increased retention of epirubicin in the bladder by the HEC and HPMC gels warrant further investigation, using an in-vivo model, to assess their potential for use as treatment for non-muscle-invasive bladder cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunotherapy is a promising strategy for the treatment of various types of cancer. An antibody that targets programmed death ligand-1 (PD-L1) pathway has been shown to be active towards various types of cancer, including melanoma and lung cancer. MPDL3280A, an anti‑PD-L1 antibody, has shown clear clinical activity in PD-L1-overexpressing bladder cancer with an objective response rate of 40-50%, resulting in a breakthrough therapy designation granted by FDA. These events pronounce the importance of targeting the PD-L1 pathway in the treatment of bladder cancer. In the present study, we investigated the prognostic significance of the expression of three genes in the PD-L1 pathway, including PD-L1, B7.1 and PD-1, in three independent bladder cancer datasets in the Gene Expression Omnibus database. PD-L1, B7.1 and PD-1 were significantly associated with clinicopathological parameters indicative of a more aggressive phenotype of bladder cancer, such as a more advanced stage and a higher tumor grade. In addition, a high level expression of PD-L1 was associated with reduced patient survival. Of note, the combination of PD-L1 and B7.1 expression, but not other combinations of the three genes, were also able to predict patient survival. Our findings support the development of anti-PD-L1, which blocks PD-L1-PD-1 and B7.1-PD-L1 interactions, in treatment of bladder cancer. The observations were consistent in the three independent bladder cancer datasets consisting of a total of 695 human bladder specimens. The datasets were then assessed and it was found that the expression levels of the chemokine CC-motif ligand (CCL), CCL3, CCL8 and CCL18, were correlated with the PD-L1 expression level, while ADAMTS13 was differentially expressed in patients with a different survival status (alive or deceased). Additional investigations are required to elucidate the role of these genes in the PD-L1-mediated immune system suppression and bladder cancer progression. In conclusion, findings of this study suggested that PD-L1 is an important prognostic marker and a therapeutic target for bladder cancer.