990 resultados para Biotic stress


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grape berry is considered a non climacteric fruit, but there are some evidences that ethylene plays a role in the control of berry ripening. This PhD thesis aimed to give insights in the role of ethylene and ethylene-related genes in the regulation of grape berry ripening. During this study a small increase in ethylene concentration one week before véraison has been measured in Vitis vinifera L. ‘Pinot Noir’ grapes confirming previous findings in ‘Cabernet Sauvignon’. In addition, ethylene-related genes have been identified in the grapevine genome sequence. Similarly to other species, biosynthesis and ethylene receptor genes are present in grapevine as multi-gene families and their expression appeared tissue or developmental specific. All the other elements of the ethylene signal transduction cascade were also identified in the grape genome. Among them, there were ethylene response factors (ERF) which modulate the transcription of many effector genes in response to ethylene. In this study seven grapevine ERFs have been characterized and they showed tissue and berry development specific expression profiles. Two sequences, VvERF045 and VvERF063, seemed likely involved in berry ripening control due to their expression profiles and their sequence annotation. VvERF045 was induced before véraison and was specific of the ripe berry, by sequence similarity it was likely a transcription activator. VvERF063 displayed high sequence similarity to repressors of transcription and its expression, very high in green berries, was lowest at véraison and during ripening. To functionally characterize VvERF045 and VvERF063, a stable transformation strategy was chosen. Both sequences were cloned in vectors for over-expression and silencing and transferred in grape by Agrobacterium-mediated or biolistic-mediated gene transfer. In vitro, transgenic VvERF045 over-expressing plants displayed an epinastic phenotype whose extent was correlated to the transgene expression level. Four pathogen stress response genes were significantly induced in the transgenic plants, suggesting a putative function of VvERF045 in biotic stress defense during berry ripening. Further molecular analysis on the transgenic plants will help in identifying the actual VvERF045 target genes and together with the phenotypic characterization of the adult transgenic plants, will allow to extensively define the role of VvERF045 in berry ripening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pseudogenes (Ψs), including processed and non-processed Ψs, are ubiquitous genetic elements derived from originally functional genes in all studied genomes within the three kingdoms of life. However, systematic surveys of non-processed Ψs utilizing genomic information from multiple samples within a species are still rare. Here a systematic comparative analysis was conducted of Ψs within 80 fully re-sequenced Arabidopsis thaliana accessions, and 7546 genes, representing ~28% of the genomic annotated open reading frames (ORFs), were found with disruptive mutations in at least one accession. The distribution of these Ψs on chromosomes showed a significantly negative correlation between Ψs/ORFs and their local gene densities, suggesting a higher proportion of Ψs in gene desert regions, e.g. near centromeres. On the other hand, compared with the non-Ψ loci, even the intact coding sequences (CDSs) in the Ψ loci were found to have shorter CDS length, fewer exon number and lower GC content. In addition, a significant functional bias against the null hypothesis was detected in the Ψs mainly involved in responses to environmental stimuli and biotic stress as reported, suggesting that they are likely important for adaptive evolution to rapidly changing environments by pseudogenization to accumulate successive mutations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants are important mediators between above- and belowground herbivores. Consequently, interactions between root and shoot defences can have far-reaching impacts on entire food webs. We recently reported that infestation of maize roots by the root feeding larvae of the beetle Diabrotica virgifera virgifera boosts shoot resistance against herbivores and pathogens. Root herbivory also induced DIMBOA levels and primed for enhanced induction of chlorogenic acid, two secondary metabolites that have been associated with biotic stress resistance. Interestingly, ABA emerged as a putative long-distance signal, possibly responsible for this effect. In this addendum, we investigate the role of root-derived ABA in the systemic regulation of aboveground DIMBOA, and the phenolic compounds chlorogenic acid, caffeic and ferulic acid. We discuss the relevance of the plant hormone in relation to defence against the leaf herbivore Spodoptera littoralis. Soil-drench treatment with ABA mimicked root herbivore-induced accumulation of DIMBOA in the leaves. Similarly, ABA mimicked aboveground priming of chlorogenic acid production, resulting in augmented accumulation of this compound upon subsequent shoot attack by S. littoralis. These findings confirm our notion that ABA acts as an important signal in the regulation of aboveground defence upon belowground herbivory. However, based on our previous finding that ABA alone is not sufficient to trigger aboveground resistance against S. littoralis caterpillars, the results suggest that the ABA-inducible effects on DIMBOA and chlorogenic acid are not solely responsible for root herbivore-induced resistance against S. littoralis. Full text HTML PDF

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Millets are major food and feed sources in the developing world especially in the semi-arid tropical regions of Africa and Asia. The most widely cultivated millets are pearl millet [Pennisetum glaucum (L.) R. Br.], finger millet [Eleusine coracana (L.) Gaertn], foxtail millet [Setaria italica (L.) P. Beauvois], Japanese barnyard millet [Echinochloa esculneta (A. Braun) H. Scholz], Indian Barnyard millet [Echinochloa frumetacea Link], kodo millet [Paspalum scrobiculatum L.], little millet [Panicum sumatrense Roth.ex.Roem. & Schult.], proso millet [Panicum miliaceum L.], tef [Eragrostis tef (Zucc.) Trotter] and fonio or acha [Digitaria exilis (Kippist) Stapf and D. iburua Stapf]. Millets are resilient to extreme environmental conditions especially to inadequate moisture and are rich in nutrients. Millets are also considered to be a healthy food, mainly due to the lack of gluten (a substance that causes coeliac disease) in their grain. Despite these agronomic, nutritional and health-related benefits, millets produce very low yield compared to major cereals such as wheat and rice. This extremely low productivity is related to the challenging environment in which they are extensively cultivated and to the little research investment in these crops. Recently, several national and international initiatives have begun to support the improvement of diverse millet types.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant–microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Monte Biogeographic Province, located in the arid region of Argentina, the presence of Prosopis flexuosa DC. produces spatial heterogeneity through edaphic modifications and microclimate changes. This results in vegetation patches differing in species composition and abundance. However, this interaction can be modified by the occurrence of gradients of biotic stress or disturbance intensity. In particular, grazing has been observed to enhance or reduce vegetation heterogeneity. Such complex of interactions could determine forage availability for cattle in one of the driest areas of the Monte Desert. We assessed the effect of Prosopis on understory species and analyzed whether the outcomes of this interaction differed with distance to watering points, as a proxy of grazing intensity, in the Northeast of Mendoza Province, Argentina. We used a two-way factorial design including the following factors: 1) microsite (under the cover of P. flexuosa trees and in intercanopy microsites) and 2) distance to watering points ("near the watering point", 500-700 m away, and "far from the watering point", 3-4 km away). Cover of each species, total cover, bare soil, and litter were recorded, and plant diversity, richness, and evenness were estimated with the modified Point Quadrat method. Results showed that P. flexuosa cover, distance from watering points, and the interaction between them determined species composition, abundance and spatial distribution of understory species, and were, consequently, a determining factor for forage availability. The presence of P. flexuosa enhances carrying capacity by supporting higher abundance of grasses under its canopy. Near watering points, high grazing intensity appears to disrupt the patches formed under P. flexuosa canopies, reducing the differences between microsites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biotic effects of volcanism have long been the unknown factors in creating biotic stress, and the contribution of the Deccan volcanism to the K-T mass extinction remains largely unknown. Detailed studies of the volcanic-rich sediments of Indian Ocean Ninetyeast Ridge Sites 216 and 217 and Wharton Basin Site 212 reveal that the biotic effects of late Maastrichtian volcanism on planktic foraminifera and calcareous nannofossils are locally as severe as those of the K-T mass extinction. The biotic expressions of these high stress environments are characterized by the Lilliput effect, which includes reduced diversity by eliminating most K-strategy species, and reduction in specimen size (dwarfing), frequently to less than half their normal adult size of both r-strategy and surviving K-strategy species. In planktic foraminifera, the most extreme biotic stress results are nearly monospecific assemblages dominated by the disaster opportunist Guembelitria, similar to the aftermath of the K-T mass extinction. The first stage of improving environmental conditions results in dominance of dwarfed low oxygen tolerant Heterohelix species and the presence of a few small r-strategy species (Hedbergella, Globigerinelloides). Calcareous nannofossil assemblages show similar biotic stress signals with the dominance of Micula decussata, the disaster opportunist, and size reduction in the mean length of subordinate r-strategy species particularly in Arkhangelskiella cymbiformis and Watznaueria barnesiae. These impoverished and dwarfed late Maastrichtian assemblages appear to be the direct consequences of mantle plume volcanism and associated environmental changes, including high nutrient influx leading to eutrophic and mesotrophic waters, low oxygen in the water column and decreased watermass stratification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ulmus minor es una especie arbórea originaria de Europa cuyas poblaciones han sido diezmadas por el hongo patógeno causante de la enfermedad de la grafiosis. La conservación de los olmos exige plantearse su propagación a través de plantaciones y conocer mejor su ecología y biología. Ulmus minor es un árbol de ribera, pero frecuentemente se encuentra alejado del cauce de arroyos y ríos, donde la capa freática sufre fuertes oscilaciones. Por ello, nuestra hipótesis general es que esta especie es moderadamente resistente tanto a la inundación como a la sequía. El principal objetivo de esta tesis doctoral es entender desde un punto de vista funcional la respuesta de U. minor a la inundación, la sequía y la infección por O. novo-ulmi; los factores que posiblemente más influyen en la distribución actual de U. minor. Con este objetivo se persigue dar continuidad a los esfuerzos de conservación de esta especie que desde hace años se dedican en varios centros de investigación a nivel mundial, ya que, entender mejor los mecanismos que contribuyen a la resistencia de U. minor ante la inoculación con O. novo-ulmi y factores de estrés abiótico ayudará en la selección y propagación de genotipos resistentes a la grafiosis. Se han planteado tres experimentos en este sentido. Primero, se ha comparado la tolerancia de brinzales de U. minor y U. laevis – otro olmo ibérico – a una inmersión controlada con el fin de evaluar su tolerancia a la inundación y comprender los mecanismos de aclimatación. Segundo, se ha comparado la tolerancia de brinzales de U. minor y Quercus ilex – una especie típica de ambientes Mediterránea secos – a la falta de agua en el suelo con el fin de evaluar el grado de tolerancia y los mecanismos de aclimatación a la sequía. El hecho de comparar dos especies contrastadas responde al interés en entender mejor cuales son los procesos que conducen a la muerte de una planta en condiciones de sequía – asunto sobre el que hay una interesante discusión desde hace algunos años. En tercer lugar, con el fin de entender mejor la resistencia de algunos genotipos de U. minor a la grafiosis, se han estudiado las diferencias fisiológicas y químicas constitutivas e inducidas por O. novo-ulmi entre clones de U. minor seleccionados a priori por su variable grado de resistencia a esta enfermedad. En el primer experimento se observó que los brinzales de U. minor sobrevivieron 60 días inmersos en una piscina con agua no estancada hasta una altura de 2-3 cm por encima del cuello de la raíz. A los 60 días, los brinzales de U. laevis se sacaron de la piscina y, a lo largo de las siguientes semanas, fueron capaces de recuperar las funciones fisiológicas que habían sido alteradas anteriormente. La conductividad hidráulica de las raíces y la tasa de asimilación de CO2 neta disminuyeron en ambas especies. Por el contrario, la tasa de respiración de hojas, tallos y raíces aumentó en las primeras semanas de la inundación, posiblemente en relación al aumento de energía necesario para desarrollar mecanismos de aclimatación a la inundación, como la hipertrofia de las lenticelas que se observó en ambas especies. Por ello, el desequilibrio del balance de carbono de la planta podría ser un factor relevante en la mortalidad de las plantas ante inundaciones prolongadas. Las plantas de U. minor (cultivadas en envases de 16 litros a media sombra) sobrevivieron por un prolongado periodo de tiempo en verano sin riego; la mitad de las plantas murieron tras 90 días sin riego. El cierre de los estomas y la pérdida de hojas contribuyeron a ralentizar las pérdidas de agua y tolerar la sequía en U. minor. Las obvias diferencias en tolerancia a la sequía con respecto a Q. ilex se reflejaron en la distinta capacidad para ralentizar la aparición del estrés hídrico tras dejar de regar y para transportar agua en condiciones de elevada tensión en el xilema. Más relevante es que las plantas con evidentes síntomas de decaimiento previo a su muerte exhibieron pérdidas de conductividad hidráulica en las raíces del 80% en ambas especies, mientras que las reservas de carbohidratos apenas variaron y lo hicieron de forma desigual en ambas especies. Árboles de U. minor de 5 y 6 años de edad (plantados en eras con riego mantenido) exhibieron una respuesta a la inoculación con O. novo-ulmi consistente con ensayos previos de resistencia. La conductividad hidráulica del tallo, el potencial hídrico foliar y la tasa de asimilación de CO2 neta disminuyeron significativamente en relación a árboles inoculados con agua, pero solo en los clones susceptibles. Este hecho enlaza con el perfil químico “más defensivo” de los clones resistentes, es decir, con los mayores niveles de suberina, ácidos grasos y compuestos fenólicos en estos clones que en los susceptibles. Ello podría restringir la propagación del hongo en el árbol y preservar el comportamiento fisiológico de los clones resistentes al inocularlos con el patógeno. Los datos indican una respuesta fisiológica común de U. minor a la inundación, la sequía y la infección por O. novo-ulmi: pérdida de conductividad hidráulica, estrés hídrico y pérdida de ganancia neta de carbono. Pese a ello, U. minor desarrolla varios mecanismos que le confieren una capacidad moderada para vivir en suelos temporalmente anegados o secos. Por otro lado, el perfil químico es un factor relevante en la resistencia de ciertos genotipos a la grafiosis. Futuros estudios deberían examinar como este perfil químico y la resistencia a la grafiosis se ven alteradas por el estrés abiótico. ABSTRACT Ulmus minor is a native European elm species whose populations have been decimated by the Dutch elm disease (DED). An active conservation of this species requires large-scale plantations and a better understanding of its biology and ecology. U. minor generally grows close to water channels. However, of the Iberian riparian tree species, U. minor is the one that spread farther away from rivers and streams. For these reasons, we hypothesize that this species is moderately tolerant to both flooding and drought stresses. The main aim of the present PhD thesis is to better understand the functional response of U. minor to the abiotic stresses – flooding and drought – and the biotic stress – DED – that can be most influential on its distribution. The overarching goal is to aid in the conservation of this emblematic species through a better understanding of the mechanisms that contribute to resistance to abiotic and biotic stresses; an information that can help in the selection of resistant genotypes and their expansion in large-scale plantations. To this end, three experiments were set up. First, we compared the tolerance to experimental immersion between seedlings of U. minor and U. laevis – another European riparian elm species – in order to assess their degree of tolerance and understand the mechanisms of acclimation to this stress. Second, we investigated the tolerance to drought of U. minor seedlings in comparison with Quercus ilex (an oak species typical of dry Mediterranean habitats). Besides assessing and understanding U. minor tolerance to drought at the seedling stage, the aim was to shed light into the functional alterations that trigger drought-induced plant mortality – a matter of controversy in the last years. Third, we studied constitutive and induced physiological and biochemical differences among clones of variable DED resistance, before and following inoculation with Ophiostoma novo-ulmi. The goal is to shed light into the factors of DED resistance that is evident in some genotypes of U. minor, but not others. Potted seedlings of U. minor survived for 60 days immersed in a pool with running water to approximately 2-3 cm above the stem collar. By this time, U. minor seedlings died, whereas U. laevis seedlings moved out of the pool were able to recover most physiological functions that had been altered by flooding. For example, root hydraulic conductivity and leaf photosynthetic CO2 uptake decreased in both species; while respiration initially increased with flooding in leaves, stems and roots possibly to respond to energy demands associated to mechanisms of acclimation to soil oxygen deficiency; as example, a remarkable hypertrophy of lenticels was soon observed in flooded seedlings of both species. Therefore, the inability to maintain a positive carbon balance somehow compromises seedling survival under flooding, earlier in U. minor than U. laevis, partly explaining their differential habitats. Potted seedlings of U. minor survived for a remarkable long time without irrigation – half of plants dying only after 90 days of no irrigation in conditions of high vapour pressure deficit typical of summer. Some mechanisms that contributed to tolerate drought were leaf shedding and stomata closure, which reduced water loss and the risk of xylem cavitation. Obviously, U. minor was less tolerant to drought than Q. ilex, differences in drought tolerance resulting mostly from the distinct capacity to postpone water stress and conduct water under high xylem tension among species. More relevant was that plants of both species exhibited similar symptoms of root hydraulic failure (i.e. approximately 80% loss of hydraulic conductivity), but a slight and variable depletion of non-structural carbohydrate reserves preceding dieback. Five- and six-year-old trees of U. minor (planted in the field with supplementary watering) belonging to clones of contrasted susceptibility to DED exhibited a different physiological response to inoculation with O. novo-ulmi. Stem hydraulic conductivity, leaf water potential and photosynthetic CO2 uptake decreased significantly relative to control trees inoculated with water only in DED susceptible clones. This is consistent with the “more defensive” chemical profile observed in resistant clones, i.e. with higher levels of saturated hydrocarbons (suberin and fatty acids) and phenolic compounds than in susceptible clones. These compounds could restrict the spread of O. novo-ulmi and contribute to preserving the near-normal physiological function of resistant trees when exposed to the pathogen. These results evidence common physiological responses of U. minor to flooding, drought and pathogen infection leading to xylem water disruption, leaf water stress and reduced net carbon gain. Still, seedlings of U. minor develop various mechanisms of acclimation to abiotic stresses that can play a role in surviving moderate periods of flood and drought. The chemical profile appears to be an important factor for the resistance of some genotypes of U. minor to DED. How abiotic stresses such as flooding and drought affect the capacity of resistant U. minor clones to face O. novo-ulmi is a key question that must be contemplated in future research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To feed a world population growing by up to 160 people per minute, with >90% of them in developing countries, will require an astonishing increase in food production. Forecasts call for wheat to become the most important cereal in the world, with maize close behind; together, these crops will account for ≈80% of developing countries’ cereal import requirements. Access to a range of genetic diversity is critical to the success of breeding programs. The global effort to assemble, document, and utilize these resources is enormous, and the genetic diversity in the collections is critical to the world’s fight against hunger. The introgression of genes that reduced plant height and increased disease and viral resistance in wheat provided the foundation for the “Green Revolution” and demonstrated the tremendous impact that genetic resources can have on production. Wheat hybrids and synthetics may provide the yield increases needed in the future. A wild relative of maize, Tripsacum, represents an untapped genetic resource for abiotic and biotic stress resistance and for apomixis, a trait that could provide developing world farmers access to hybrid technology. Ownership of genetic resources and genes must be resolved to ensure global access to these critical resources. The application of molecular and genetic engineering technologies enhances the use of genetic resources. The effective and complementary use of all of our technological tools and resources will be required for meeting the challenge posed by the world’s expanding demand for food.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sugarcane is a monocot plant grown in tropical and subtropical regions, with Brazil being the largest producer. Despite its economic importance, little is known about the molecular flowering process in sugarcane. This physiological process can promote a loss up to 60% in sugar or bioethanol. Thus, this work had as objective characterize a HINT1 homologous gene previously identified in subtractive libraries of flowering. Genomic analysis of gene and promoter region structure allowed the observation that there are at least two distinct genes homologous to HINT on sugarcane. Bioinformatics analyses showed the conservation of the characteristic protein domain of HIT superfamily and indicate a phylogenetic relationship associated to cell location. Moreover, a possible relation with the SBTILISIN-like protein family through the information available in interatomas was observed. This suggests that the HINT gene of sugarcane can be related to plant development, there are several possibilities of interactions in the regulation of floral induction process, because the sequences present in regulatory regions indicate that differential expression of HINT was related to with climatic factors in the Northeast region of Brazil as well as to biotic stress and phytohormones. Furthermore, the sugarcane phenotypes indicate that the influence of HINT may happen due to product accumulation of its enzymatic activity. For these characteristics this gene can be used as a marker in the selection of new varieties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By definition, the domestication process leads to an overall reduction of crop genetic diversity. This lead to the current search of genomic regions in wild crop relatives (CWR), an important task for modern carrot breeding. Nowadays massive sequencing possibilities can allow for discovery of novel genetic resources in wild populations, but this quest could be aided by the use of a surrogate gene (to first identify and prioritize novel wild populations for increased sequencing effort). Alternative oxidase (AOX) gene family seems to be linked to all kinds of abiotic and biotic stress reactions in various organisms and thus have the potential to be used in the identification of CWR hotspots of environment-adapted diversity. High variability of DcAOX1 was found in populations of wild carrot sampled across a West-European environmental gradient. Even though no direct relation was found with the analyzed climatic conditions or with physical distance, population differentiation exists and results mainly from the polymorphisms associated with DcAOX1 exon 1 and intron 1. The relatively high number of amino acid changes and the identification of several unusually variable positions (through a likelihood ratio test), suggests that DcAOX1 gene might be under positive selection. However, if positive selection is considered, it only acts on some specific populations (i.e. is in the form of adaptive differences in different population locations) given the observed high genetic diversity. We were able to identify two populations with higher levels of differentiation which are promising as hot spots of specific functional diversity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adequate silicon fertilization greatly boosts rice yield and mitigates biotic and abiotic stress, and improves grain quality through lowering the content of cadmium and inorganic arsenic. This review on silicon dynamics in rice considers recent advances in our understanding of the role of silicon in rice, and the challenges of maintaining adequate silicon fertility within rice paddy systems. Silicon is increasingly considered as an element required for optimal plant performance, particularly in rice. Plants can survive with very low silicon under laboratory/glasshouse conditions, but this is highly artificial and, thus, silicon can be considered as essential for proper plant function in its environment. Silicon is incorporated into structural components of rice cell walls were it increases cell and tissue rigidity in the plant. Structural silicon provides physical protection to plants against microbial infection and insect attack as well as reducing the quality of the tissue to the predating organisms. The abiotic benefits are due to silicon's effect on overall organ strength. This helps protect against lodging, drought stress, high temperature (through efficient maintenance of transpiration), and photosynthesis by protecting against high UV. Furthermore, silicon also protects the plant from saline stress and against a range of toxic metal stresses (arsenic, cadmium, chromium, copper, nickel and zinc). Added to this, silicon application decreases grain concentrations of various human carcinogens, in particular arsenic, antimony and cadmium. As rice is efficient at stripping bioavailable silicon from the soil, recycling of silicon rich rice straw biomass or addition of inorganic silicon fertilizer, primarily obtained from iron and steel slag, needs careful management. Silicon in the soil may be lost if the silicon-cycle, traditionally achieved via composting of rice straw and returning it to the land, is being broken. As composting of rice straw and incorporation of composted or non-composted straw back to land are resource intensive activities, these activities are declining due to population shifts from the countryside to cities. Processes that accelerate rice straw composting, therefore, need to be identified to aid more efficient use of this resource. In addition, rice genetics may help address declining available silicon in paddy soils: for example by selecting for characteristics during breeding that lead to an increased ability of roots to access recalcitrant silicon sources from soil and/or via selection for traits that aid the maintenance of a high silicon status in shoots. Recent advances in understanding the genetic regulation of silicon uptake and transport by rice plants will aid these goals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Jasmonic acid (JA) is a naturally occurring growth regulator found in higher plants. Several physiological roles have been described for this compound (or a related compound, methyl jasmonate) during plant development and in response to biotic and abiotic stress. To accurately determine JA levels in plant tissue, we have synthesized JA containing 13C for use as an internal standard with an isotopic composition of [225]:[224] 0.98:0.02 compared with [225]:[224] 0.15:0.85 for natural material. GC analysis (flame ionization detection and MS) indicate that the internal standard is composed of 92% 2-(+/-)-[13C]JA and 8% 2-(+/-)-7-iso-[13C]JA. In soybean plants, JA levels were highest in young leaves, flowers, and fruit (highest in the pericarp). In soybean seeds and seedlings, JA levels were highest in the youngest organs including the hypocotyl hook, plumule, and 12-h axis. In soybean leaves that had been dehydrated to cause a 15% decrease in fresh weight, JA levels increased approximately 5-fold within 2 h and declined to approximately control levels by 4 h. In contrast, a lag time of 1-2 h occurred before abscisic acid accumulation reached a maximum. These results will be discussed in the context of multiple pathways for JA biosynthesis and the role of JA in plant development and responses to environmental signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bananas are susceptible to a diverse range of biotic and abiotic stresses, many of which cause serious production constraints worldwide. One of the most destructive banana diseases is Fusarium wilt caused by the soil-borne fungus, Fusarium oxysporum f. sp. cubense (Foc). No effective control strategy currently exists for this disease which threatens global banana production. Although disease resistance exists in some wild bananas, attempts to introduce resistance into commercially acceptable bananas by conventional breeding have been hampered by low fertility, long generation times and association of poor agronomical traits with resistance genes. With the advent of reliable banana transformation protocols, molecular breeding is now regarded as a viable alternative strategy to generate disease-resistant banana plants. Recently, a novel strategy involving the expression of anti-apoptosis genes in plants was shown to result in resistance against several necrotrophic fungi. Further, the transgenic plants showed increased resistance to a range of abiotic stresses. In this thesis, the use of anti-apoptosis genes to generate transgenic banana plants with resistance to Fusarium wilt was investigated. Since water stress is an important abiotic constraint to banana production, the resistance of the transgenic plants to water stress was also examined. Embryogenic cell suspensions (ECS) of two commercially important banana cultivars, Grand Naine (GN) and Lady Finger (LF), were transformed using Agrobacterium with the anti-apoptosis genes, Bcl-xL, Bcl-xL G138A, Ced-9 and Bcl- 2 3’ UTR. An interesting, and potentially important, outcome was that the use of anti-apoptosis genes resulted in up to a 50-fold increase in Agrobacterium-mediated transformation efficiency of both LF and GN cells over vector controls. Regenerated plants were subjected to a complete molecular characterisation in order to detect the presence of the transgene (PCR), transcript (RT-PCR) and gene product (Western blot) and to determine the gene copy number (Southern blot). A total of 36 independently-transformed GN lines (8 x Bcl-xL, 5 x Bcl-xL G138A, 15 x Ced-9 and 8 x Bcl-2 3’ UTR) and 41 independently-transformed LF lines (8 x Bcl-xL, 7 x BclxL G138A, 13 x Ced-9 and 13 x Bcl-2 3’ UTR) were identified. The 41 transgenic LF lines were multiplied and clones from each line were acclimatised and grown under glasshouse conditions for 8 weeks to allow monitoring for phenotypic abnormalities. Plants derived from 3 x Bcl-xL, 2 x Ced-9 and 5 x Bcl-2 3’ UTR lines displayed a variety of aberrant phenotypes. However, all but one of these abnormalities were off-types commonly observed in tissue-cultured, non-transgenic banana plants and were therefore unlikely to be transgene-related. Prior to determining the resistance of the transgenic plants to Foc race 1, the apoptotic effects of the fungus on both wild-type and Bcl-2 3’ UTR-transgenic LF banana cells were investigated using rapid in vitro root assays. The results from these assays showed that apoptotic-like cell death was elicited in wild-type banana root cells as early as 6 hours post-exposure to fungal spores. In contrast, these effects were attenuated in the root cells of Bcl-2 3’ UTR-transgenic lines that were exposed to fungal spores. Thirty eight of the 41 transgenic LF lines were subsequently assessed for resistance to Foc race 1 in small-plant glasshouse bioassays. To overcome inconsistencies in rating the internal (vascular discolouration) disease symptoms, a MatLab-based computer program was developed to accurately and reliably assess the level of vascular discolouration in banana corms. Of the transgenic LF banana lines challenged with Foc race 1, 2 x Bcl-xL, 3 x Ced-9, 2 x Bcl-2 3’ UTR and 1 x Bcl-xL G138A-transgenic line were found to show significantly less external and internal symptoms than wild-type LF banana plants used as susceptible controls at 12 weeks post-inoculation. Of these lines, Bcl-2 3’ UTR-transgenic line #6 appeared most resistant, displaying very mild symptoms similar to the wild-type Cavendish banana plants that were included as resistant controls. This line remained resistant for up to 23 weeks post-inoculation. Since anti-apoptosis genes have been shown to confer resistance to various abiotic stresses in other crops, the ability of these genes to confer resistance against water stress in banana was also investigated. Clonal plants derived from each of the 38 transgenic LF banana plants were subjected to water stress for a total of 32 days. Several different lines of transgenic plants transformed with either Bcl-xL, Bcl-xL G138A, Ced-9 or Bcl-2 3’ UTR showed a delay in visual water stress symptoms compared with the wild-type control plants. These plants all began producing new growth from the pseudostem following daily rewatering for one month. In an attempt to determine whether the protective effect of anti-apoptosis genes in transgenic banana plants was linked with reactive oxygen species (ROS)-associated programmed cell death (PCD), the effect of the chloroplast-targeting, ROS-inducing herbicide, Paraquat, on wild-type and transgenic LF was investigated. When leaf discs from wild-type LF banana plants were exposed to 10 ìM Paraquat, complete decolourisation occurred after 48 hours which was confirmed to be associated with cell death and ROS production by trypan blue and 3,3-diaminobenzidine (DAB) staining, respectively. When leaf discs from the transgenic lines were exposed to Paraquat, those derived from some lines showed a delay in decolourisation, suggesting only a weak protective effect from the transgenes. Finally, the protective effect of anti-apoptosis genes against juglone, a ROS-inducing phytotoxin produced by the causal agent of black Sigatoka, Mycosphaerella fijiensis, was investigated. When leaf discs from wild-type LF banana plants were exposed to 25 ppm juglone, complete decolourisation occurred after 48 hours which was again confirmed to be associated with cell death and ROS production by trypan blue and DAB staining, respectively. Further, TdT-mediated dUTP nick-end labelling (TUNEL) assays on these discs suggested that the cell death was apoptotic. When leaf discs from the transgenic lines were exposed to juglone, discs from some lines showed a clear delay in decolourisation, suggesting a protective effect. Whether these plants are resistant to black Sigatoka is unknown and will require future glasshouse and field trials. The work presented in this thesis provides the first report of the use of anti-apoptosis genes as a strategy to confer resistance to Fusarium wilt and water stress in a nongraminaceous monocot, banana. Such a strategy may be exploited to generate resistance to necrotrophic pathogens and abiotic stresses in other economically important crop plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programmed cell death-associated genes, especially antiapoptosis-related genes have been reported to confer tolerance to a wide range of biotic and abiotic stresses in dicotyledonous plants such as tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.). This is the first time the antiapoptotic gene SfIAP was transformed into a monocotyledonous representative: rice (Oryza sativa L.). Transgenic rice strains expressing SfIAP were generated by the Agrobacterium-mediated transformation method and rice embryogenic calli, and assessed for their ability to confer tolerance to salt stress at both the seedling and reproductive stages using a combination of molecular, agronomical, physiological and biochemical techniques. The results show that plants expressing SfIAP have higher salt tolerance levels in comparison to the wild-type and vector controls. By preventing cell death at the onset of salt stress and maintaining the cell membrane’s integrity, SfIAP transgenic rice plants can retain plant water status, ion homeostasis, photosynthetic efficiency and growth to combat salinity successfully.