91 resultados para Biopharmaceutical


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition of the potential efficacy of plasmid DNA (pDNA) molecules as vectors in the treatment and prevention of emerging diseases has birthed the confidence to combat global pandemics. This is due to the close-to-zero safety concern associated with pDNA vectors compared to viral vectors in cell transfection and targeting. Considerable attention has been paid to the potential of pDNA vectors but comparatively less thought has been given to the practical challenges in producing large quantities to meet current rising demands. A pilot-scale fermentation scheme was developed by employing a stoichiometrically-designed growth medium whose exceptional plasmid yield performance was attested in a shake flask environment for pUC19 and pEGFP-N1 transformed into E. coliDH5α and E. coliJM109, respectively. Batch fermentation of E. coliDH5α-pUC19 employing the stoichiometric medium displayed a maximum plasmid volumetric and specific yield of 62.6 mg/L and 17.1 mg/g (mg plasmid/g dry cell weight), respectively. Fed-batch fermentation of E. coliDH5α-pUC19 on a glycerol substrate demonstrated one of the highest ever reported pilot-scale plasmid specific yield of 48.98 mg/g and a volumetric yield of 0.53 g/L. The attainment of high plasmid specific yields constitutes a decrease in plasmid manufacturing cost and enhances the effectiveness of downstream processes by reducing the proportion of intracellular impurities. The effect of step-rise temperature induction was also considered to maximize ColE1-origin plasmid replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopharmaceuticals have been shown to have low delivery and transformation efficiencies. To over come this, larger doses are administered in order to obtain the desired response which may lead to toxicity and drug resistance. This paper reports upon a continuous particle production method utilizing surface acoustic wave atomization to reliably produce micro and nanoparticles with physical characteristics to facilitate the cellular uptake of biopharmaceuticals. By producing particles of an optimal size for cellular uptake, the efficacy and specificity of drug loaded nanoparticles will be increased. Better delivery methods will result in dosage reduction (hence lower costs per dose), reduced toxicity, and reduced problems associated with multidrug resistance due to over dosing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of new medicinal products is both a contributor to global economic growth and a source of valuable benefits to human health. Given their direct responsibility for public health, regulatory authorities monitor closely both the development and exploitation of the underlying technologies and the products derived from them. The manner in which such regulation is implemented can result in regulators constraining or facilitating the generation of new products. This paper will study as an example the impact of EU Risk Management Plans (EU-RMPs), which have been mandatory for the approval of new medicines since 2005, on both the industry and regulatory authorities. In interviews, the responses of those who had experience of the implementation of EU-RMPs were mixed. Although the benefits of a more structured and predictable approach to the evaluation of risk were appreciated, some respondents perceived the regulation as an excessive burden on their organisations. The exploration of factors that influence how EU-RMP regulation affects individual firms provides new insights for both regulators and managers, and demonstrates one aspect of the complexity of the process by which new medicinal products are brought to market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of new medicinal products is both a contributor to global economic growth and a source of valuable benefits to human health. Given their direct responsibility for public health, regulatory authorities monitor closely both the development and exploitation of the underlying technologies and the products derived from them. The manner in which such regulation is implemented can result in regulators constraining or facilitating the generation of new products. This paper will study as an example the impact of EU Risk Management Plans (EU-RMPs), which have been mandatory for the approval of new medicines since 2005, on both the industry and regulatory authorities. In interviews, the responses of those who had experience of the implementation of EU-RMPs were mixed. Although the benefits of a more structured and predictable approach to the evaluation of risk were appreciated, some respondents perceived the regulation as an excessive burden on their organisations. The exploration of factors that influence how EU-RMP regulation affects individual firms provides new insights for both regulators and managers, and demonstrates one aspect of the complexity of the process by which new medicinal products are brought to market. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The costs of developing the types of new drugs that have been pursued by traditional pharmaceutical firms have been estimated in a number of studies. However, similar analyses have not been published on the costs of developing the types of molecules on which biotech firms have focused. This study represents a first attempt to get a sense for the magnitude of the R&D costs associated with the discovery and development of new therapeutic biopharmaceuticals (specifically, recombinant proteins and monoclonal antibodies [mAbs]). We utilize drug-specific data on cash outlays, development times, and success in obtaining regulatory marketing approval to estimate the average pre-tax R&D resource cost for biopharmaceuticals up to the point of initial US marketing approval (in year 2005 dollars). We found average out-of-pocket (cash outlay) cost estimates per approved biopharmaceutical of $198 million, $361 million, and $559 million for the preclinical period, the clinical period, and in total, respectively. Including the time costs associated with biopharmaceutical R&D, we found average capitalized cost estimates per approved biopharmaceutical of $615 million, $626 million, and $1241 million for the preclinical period, the clinical period, and in total, respectively. Adjusting previously published estimates of R&D costs for traditional pharmaceutical firms by using past growth rates for pharmaceutical company costs to correspond to the more recent period to which our biopharmaceutical data apply, we found that total out-of-pocket cost per approved biopharmaceutical was somewhat lower than for the pharmaceutical company data ($559 million vs $672 million). However, estimated total capitalized cost per approved new molecule was nearly the same for biopharmaceuticals as for the adjusted pharmaceutical company data ($1241 million versus $1318 million). The results should be viewed with some caution for now given a limited number of biopharmaceutical molecules with data on cash outlays, different therapeutic class distributions for biopharmaceuticals and for pharmaceutical company drugs, and uncertainty about whether recent growth rates in pharmaceutical company costs are different from immediate past growth rates. Copyright © 2007 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

South Korea, Singapore and Taiwan are well known as export-oriented developmental states which for decades employed industrial policy to target particular industries for government support. In the past fifteen years, these three countries all identified the biopharmaceutical industry as a strategic sector. This article explores, through economic analysis, the rationale for this decision and the strategies chosen for linking into the global bio-economy with the objective of catching up in biopharmaceuticals. The paper identifies three comparative advantages enjoyed by these countries in the biopharma sector: (1) public investments in basic research; (2) private investments in phase 1 clinical trials; and (3) a potentially significant contract research industry managing latter-stage clinical trials. Governments employ a range of industrial policies, consistent with these comparative advantages, to promote the biopharmaceutical industry, including public investment in biomedical hubs, research funding and research and development (R&D) tax credits. We argue that the most important feature of the biopharmaceutical industry in these countries is the dominant role of the public sector. That these countries have made progress in innovative capabilities is illustrated by input measures such as R&D expenditure as share of gross domestic product, number of patents granted and clinical trials, and volume of foreign direct investment. In contrast, output indicators such as approval of new chemical entities suggest that the process of catching up has only just commenced. Pharmaceutical innovation is at the stage of mainly generating inputs to integrated processes controlled by the globally incumbent firms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopolymers can be produced through a variety of mechanisms. They can be derived from microbial systems, extracted from higher organisms such as plants, or synthesized chemically from basic biological building blocks. A wide range of emerging applications rely on all three of these production techniques. In recent years, considerable attention has been given to biopolymers produced by microbes. It is on the microbial level where the tools of genetic engineering can be most readily applied. A number of novel materials are now being developed or introduced into the market. Biopolymers are being developed for use as medical materials, packaging, cosmetics, food additives, clothing fabrics, water treatment chemicals, industrial plastics, absorbents, biosensors, and even data storage elements. This review identifies the possible commercial applications and describes the various methods of production of microbial biopolymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV–Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV–Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 105 ± 1.90 105 cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV–VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.