28 resultados para Biofortification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Uganda, vitamin A deficiency (VAD) and iron deficiency anaemia (IDA) are major public health problems with between 15-32% of children under 5 years of age showing VAD and 73% being anaemic. This is largely due to the fact that the staple food crop of the country, banana, is low in pro-vitamin A and iron, therefore leading to dietary deficiencies. Although worldwide progress has been made to control VAD and IDA through supplementation, food fortification and diet diversification, their long term sustainability and impact in developing countries such as Uganda is limited. The approach taken by researchers at Queensland University of Technology (QUT), Australia, in collaboration with the National Agricultural Research Organization (NARO), Uganda, to address this problem, is to generate consumer acceptable banana varieties with significantly increased levels of pro-vitamin A and iron in the fruit using genetic engineering techniques. Such an approach requires the use of suitable, well characterised genes and promoters for targeted transgene expression. Recently, a new banana phytoene synthase gene (APsy2a) involved in the synthesis of pro-vitamin A (pVA) carotenoids was isolated from a high â-carotene banana (F’ei cv Asupina). In addition, sequences of banana ferritin, an iron storage protein, have been isolated from Cavendish banana. The aim of the research described in this thesis was to evaluate the function of these genes to assess their suitability for the biofortification of banana fruit. In addition, a range of banana-derived promoters were characterised to determine their suitability for controlling the expression of transgenes in banana fruit. Due to the time constraints involved with generating transgenic banana fruit, rice was used as the model crop to investigate the functionality of the banana-derived APsy2a and ferritin genes. Using Agrobacterium-mediated transformation, rice callus was transformed with APsy2a +/- the bacterial-derived carotene desaturase gene (CrtI) each under the control of the constitutive maize poly-ubiquitin promoter (ZmUbi) or seed-specific rice glutelin1 (Gt1) promoter. The maize phytoene synthase (ZmPsy1) gene was included as a control. On selective media, with the exception of ZmUbi-CrtI-transgenic callus, all antibiotic resistant callus displayed a yellow-orange colour from which the presence of â-carotene was demonstrated using Raman spectroscopy. Although the regeneration of plants from yellow-orange callus was difficult, 16 transgenic plants were obtained and characterised from callus transformed with ZmUbi-APys2a alone. At least 50% of the T1 seeds developed a yellow-orange coloured callus which was found to contain levels of â-carotene ranging from 4.6-fold to 72-fold higher than that in non-transgenic rice callus. Using the seed-specific Gt1 promoter, 38 transgenic rice plants were generated from APsy2a-CrtI-transformed callus while 32 plants were regenerated from ZmPsy1-CrtI-transformed callus. However, when analysed for presence of transgene by PCR, all transgenic plants contained the APsy2a, ZmPsy1 or CrtI transgene, with none of the plants found to be co-transformed. Using Raman spectroscopy, no â-carotene was detected in-situ in representative T1 seeds. To investigate the potential of the banana-derived ferritin gene (BanFer1) to enhance iron content, rice callus was transformed with constitutively expressed BanFer1 using the soybean ferritin gene (SoyFer) as a control. A total of 12 and 11 callus lines independently transformed with BanFer1 and SoyFer, respectively, were multiplied and transgene expression was verified by RT-PCR. Pearl’s Prussian blue staining for in-situ detection of ferric iron showed a stronger blue colour in rice callus transformed with BanFer1 compared to SoyFer. Using flame atomic absorption spectrometry, the highest mean amount of iron quantified in callus transformed with BanFer1 was 30-fold while that obtained using the SoyFer was 14-fold higher than the controls. In addition, ~78% of BanFer1-transgenic callus lines and ~27% of SoyFer-transgenic callus lines had significantly higher iron content than the non-transformed controls. Since the genes used for enhancing micronutrient content need to be expressed in banana fruit, the activity of a range of banana-derived, potentially fruit-active promoters in banana was investigated. Using uidA (GUS) as a reporter gene, the function of the Expansin1 (MaExp1), Expansin1 containing the rice actin intron (MaExp1a), Expansin4 (MaExp4), Extensin (MaExt), ACS (MaACS), ACO (MaACO), Metallothionein (MaMT2a) and phytoene synthase (APsy2a) promoters were transiently analysed in intact banana fruit using two transformation methods, particle bombardment and Agrobacterium-mediated infiltration (agro-infiltration). Although a considerable amount of variation in promoter activity was observed both within and between experiments, similar trends were obtained using both transformation methods. The MaExp1 and MaExp1a directed high levels of GUS expression in banana fruit which were comparable to those observed from the ZmUbi and Banana bunchy top virus-derived BT4 promoters that were included as positive controls. Lower levels of promoter activity were obtained in both methods using the MaACO and MaExt promoters while the MaExp4, MaACS, and APsy2a promoters directed the lowest GUS activity in banana fruit. An attempt was subsequently made to use agro-infiltration to assess the expression of pVA biosynthesis genes in banana fruit by infiltrating fruit with constructs in which the ZmUbi promoter controlled the expression of APsy2a +/- CrtI, and with the maize phytoene synthase gene (ZmPsy1) included as a control. Unfortunately, the large amount of variation and inconsistency observed within and between experiments precluded any meaningful conclusions to be drawn. The final component of this research was to assess the level of promoter activity and specificity in non-target tissue. These analyses were done on leaves obtained from glasshouse-grown banana plants stably transformed with MaExp1, MaACO, APsy2a, BT4 and ZmUbi promoters driving the expression of the GUS gene in addition to leaves from a selection of the same transgenic plants which were growing in a field trial in North Queensland. The results from both histochemical and fluorometric GUS assays showed that the MaExp1 and MaACO promoters directed very low GUS activities in leaves of stably transformed banana plants compared to the constitutive ZmUbi and BT4 promoters. In summary, the results from this research provide evidence that the banana phytoene synthase gene (APsy2a) and the banana ferritin gene (BanFer1) are functional, since the constitutive over-expression of each of these transgenes led to increased levels of pVA carotenoids (for APsy2a) and iron content (for BanFer1) in transgenic rice callus. Further work is now required to determine the functionality of these genes in stably-transformed banana fruit. This research also demonstrated that the MaExp1 and MaACO promoters are fruit-active but have low activity in non-target tissue (leaves), characteristics that make them potentially useful for the biofortification of banana fruit. Ultimately, however, analysis of fruit from field-grown transgenic plants will be required to fully evaluate the suitability of pVA biosynthesis genes and the fruit-active promoters for fruit biofortification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zeaxanthin, along with its isomer lutein, are the major carotenoids contributing to the characteristic colour of yellow sweet-corn. From a human health perspective, these two carotenoids are also specifically accumulated in the human macula, and are thought to protect the photoreceptor cells of the eye from blue light oxidative damage and to improve visual acuity. As humans cannot synthesise these compounds, they must be accumulated from dietary components containing zeaxanthin and lutein. In comparison to most dietary sources, yellow sweet-corn (Zea mays var. rugosa) is a particularly good source of zeaxanthin, although the concentration of zeaxanthin is still fairly low in comparison to what is considered a supplementary dose to improve macular pigment concentration (2 mg/person/day). In our present project, we have increased zeaxanthin concentration in sweet-corn kernels from 0.2 to 0.3 mg/100 g FW to greater than 2.0 mg/100 g FW at sweet-corn eating-stage, substantially reducing the amount of corn required to provide the same dosage of zeaxanthin. This was achieved by altering the carotenoid synthesis pathway to more than double total carotenoid synthesis and to redirect carotenoid synthesis towards the beta-arm of the pathway where zeaxanthin is synthesised. This resulted in a proportional increase of zeaxanthin from 22% to 70% of the total carotenoid present. As kernels increase in physiological maturity, carotenoid concentration also significantly increases, mainly due to increased synthesis but also due to a decline in moisture content of the kernels. When fully mature, dried kernels can reach zeaxanthin and carotene concentrations of 8.7 mg/100 g and 2.6 mg/100 g, respectively. Although kernels continue to increase in zeaxanthin when harvested past their normal harvest maturity stage, the texture of these 'over-mature' kernels is tough, making them less appealing for fresh consumption. Increase in zeaxanthin concentration and other orange carotenoids such as p-carotene also results in a decline in kernel hue angle of fresh sweet-corn from approximately 90 (yellow) to as low as 75 (orange-yellow). This enables high-zeaxanthin sweet-corn to be visually-distinguishable from standard yellow sweet-corn, which is predominantly pigmented by lutein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenium (Se) is an essential micronutrient for many organisms, including plants, animals and humans. As plants are the main source of dietary Se, plant Se metabolism is therefore important for Se nutrition of humans and other animals. However, the concentration of Se in plant foods varies between areas, and too much Se can lead to toxicity. As we discuss here, plant Se uptake and metabolism can be exploited for the purposes of developing high-Se crop cultivars and for plant-mediated removal of excess Se from soil or water. Here, we review key developments in the current understanding of Se in higher plants. We also discuss recent advances in the genetic engineering of Se metabolism, particularly for biofortification and phytoremediation of Se-contaminated environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cation transporters/channels are key players in a wide range of physiological functions in plants, including cell signaling, osmoregulation, plant nutrition and metal tolerance. The recent identification of genes encoding some of these transport systems has allowed new studies toward further understanding of their integrated roles in plant. This review summarizes recent discoveries regarding the function and regulation of the multiple systems involved in cation transport in plant cells. The role of membrane transport in the uptake, distribution and accumulation of cations in plant tissues, cell types and subcellular compartments is described. We also discuss how the knowledge of inter- and intra-species variation in cation uptake, transport and accumulation as well as the molecular mechanisms responsible for these processes can be used to increase nutrient phytoavailability and nutrients accumulation in the edible tissues of plants. The main trends for future research in the field of biofortification are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Rice is the primary source of food for billions of people in developing countries, yet the commonly consumed polished grain contains insufficient levels of the key micronutrients iron (Fe), zinc (Zn) and Vitamin A to meet daily dietary requirements. Experts estimate that a rice-based diet should contain 14.5 µg g−1 Fe in endosperm, the main constituent of polished grain, but breeding programs have failed to achieve even half of that value. Transgenic efforts to increase the Fe concentration of rice endosperm include expression of ferritin genes, nicotianamine synthase genes (NAS) or ferritin in conjunction with NAS genes, with results ranging from two-fold increases via single-gene approaches to six-fold increases via multi-gene approaches, yet no approach has reported 14.5 µg g−1 Fe in endosperm.

Methodology/Principal Findings
Three populations of rice were generated to constitutively overexpress OsNAS1, OsNAS2 or OsNAS3, respectively. Nicotianamine, Fe and Zn concentrations were significantly increased in unpolished grain of all three of the overexpression populations, relative to controls, with the highest concentrations in the OsNAS2 and OsNAS3 overexpression populations. Selected lines from each population had at least 10 µg g−1 Fe in polished grain and two OsNAS2 overexpression lines had 14 and 19 µg g−1 Fe in polished grain, representing up to four-fold increases in Fe concentration. Two-fold increases of Zn concentration were also observed in the OsNAS2 population. Synchrotron X-ray fluorescence spectroscopy demonstrated that OsNAS2 overexpression leads to significant enrichment of Fe and Zn in phosphorus-free regions of rice endosperm.

Conclusions
The OsNAS genes, particularly OsNAS2, show enormous potential for Fe and Zn biofortification of rice endosperm. The results demonstrate that rice cultivars overexpressing single rice OsNAS genes could provide a sustainable and genetically simple solution to Fe and Zn deficiency disorders affecting billions of people throughout the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of doses of selenate and selenite on rice (Oryza sativa) biofortification with Se, as well the influence of these forms of Se in the levels of P, S, Fe, and Zn in grains. The experiment was conducted in a greenhouse, in pots with 4 dm(3) of a sandy clay loam Latosol, with medium texture, in a 5x2 factorial arrangement with five doses of Se (0, 0.75, 1.50, 3.0, and 6.0 mg dm(-3)) and two forms of Se (selenate and selenite). Selenate provided greater efficiency of root uptake of Se, plant-use efficiency, translocation from roots to shoots, and content of this element in rice grains. The application of Se during fertilization influences the levels of P, S, and Zn, but does not affect those of Fe in rice grains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitamin A deficiency (VAD) is a serious problem in developing countries, affecting approximately 127 million children of preschool age and 7.2 million pregnant women each year. However, this deficiency is readily treated and prevented through adequate nutrition. This can potentially be achieved through genetically engineered biofortification of staple food crops to enhance provitamin A (pVA) carotenoid content. Bananas are the fourth most important food crop with an annual production of 100 million tonnes and are widely consumed in areas affected by VAD. However, the fruit pVA content of most widely consumed banana cultivars is low (~ 0.2 to 0.5 ìg/g dry weight). This includes cultivars such as the East African highland banana (EAHB), the staple crop in countries such as Uganda, where annual banana consumption is approximately 250 kg per person. This fact, in addition to the agronomic properties of staple banana cultivars such as vegetative reproduction and continuous cropping, make bananas an ideal target for pVA enhancement through genetic engineering. Interestingly, there are banana varieties known with high fruit pVA content (up to 27.8 ìg/g dry weight), although they are not widely consumed due to factors such as cultural preference and availability. The genes involved in carotenoid accumulation during banana fruit ripening have not been well studied and an understanding of the molecular basis for the differential capacity of bananas to accumulate carotenoids may impact on the effective production of genetically engineered high pVA bananas. The production of phytoene by the enzyme phytoene synthase (PSY) has been shown to be an important rate limiting determinant of pVA accumulation in crop systems such as maize and rice. Manipulation of this gene in rice has been used successfully to produce Golden Rice, which exhibits higher seed endosperm pVA levels than wild type plants. Therefore, it was hypothesised that differences between high and low pVA accumulating bananas could be due either to differences in PSY enzyme activity or factors regulating the expression of the psy gene. Therefore, the aim of this thesis was to investigate the role of PSY in accumulation of pVA in banana fruit of representative high (Asupina) and low (Cavendish) pVA banana cultivars by comparing the nucleic acid and encoded amino acid sequences of the banana psy genes, in vivo enzyme activity of PSY in rice callus and expression of PSY through analysis of promoter activity and mRNA levels. Initially, partial sequences of the psy coding region from five banana cultivars were obtained using reverse transcriptase (RT)-PCR with degenerate primers designed to conserved amino acids in the coding region of available psy sequences from other plants. Based on phylogenetic analysis and comparison to maize psy sequences, it was found that in banana, psy occurs as a gene family of at least three members (psy1, psy2a and psy2b). Subsequent analysis of the complete coding regions of these genes from Asupina and Cavendish suggested that they were all capable of producing functional proteins due to high conservation in the catalytic domain. However, inability to obtain the complete mRNA sequences of Cavendish psy2a, and isolation of two non-functional Cavendish psy2a coding region variants, suggested that psy2a expression may be impaired in Cavendish. Sequence analysis indicated that these Cavendish psy2a coding region variants may have resulted from alternate splicing. Evidence of alternate splicing was also observed in one Asupina psy1 coding region variant, which was predicted to produce a functional PSY1 isoform. The complete mRNA sequence of the psy2b coding regions could not be isolated from either cultivar. Interestingly, psy1 was cloned predominantly from leaf while psy2 was obtained preferentially from fruit, suggesting some level of tissue-specific expression. The Asupina and Cavendish psy1 and psy2a coding regions were subsequently expressed in rice callus and the activity of the enzymes compared in vivo through visual observation and quantitative measurement of carotenoid accumulation. The maize B73 psy1 coding region was included as a positive control. After several weeks on selection, regenerating calli showed a range of colours from white to dark orange representing various levels of carotenoid accumulation. These results confirmed that the banana psy coding regions were all capable of producing functional enzymes. No statistically significant differences in levels of activity were observed between banana PSYs, suggesting that differences in PSY activity were not responsible for differences in the fruit pVA content of Asupina and Cavendish. The psy1 and psy2a promoter sequences were isolated from Asupina and Cavendish gDNA using a PCR-based genome walking strategy. Interestingly, three Cavendish psy2a promoter clones of different sizes, representing possible allelic variants, were identified while only single promoter sequences were obtained for the other Asupina and Cavendish psy genes. Bioinformatic analysis of these sequences identified motifs that were previously characterised in the Arabidopsis psy promoter. Notably, an ATCTA motif associated with basal expression in Arabidopsis was identified in all promoters with the exception of two of the Cavendish psy2a promoter clones (Cpsy2apr2 and Cpsy2apr3). G1 and G2 motifs, linked to light-regulated responses in Arabidopsis, appeared to be differentially distributed between psy1 and psy2a promoters. In the untranscribed regulatory regions, the G1 motifs were found only in psy1 promoters, while the G2 motifs were found only in psy2a. Interestingly, both ATCTA and G2 motifs were identified in the 5’ UTRs of Asupina and Cavendish psy1. Consistent with other monocot promoters, introns were present in the Asupina and Cavendish psy1 5’ UTRs, while none were observed in the psy2a 5’ UTRs. Promoters were cloned into expression constructs, driving the â-glucuronidase (GUS) reporter gene. Transient expression of the Asupina and Cavendish psy1 and psy2a promoters in both Cavendish embryogenic cells and Cavendish fruit demonstrated that all promoters were active, except Cpsy2apr2 and Cpsy2apr3. The functional Cavendish psy2a promoter (Cpsy2apr1) appeared to have activity similar to the Asupina psy2a promoter. The activities of the Asupina and Cavendish psy1 promoters were similar to each other, and comparable to those of the functional psy2a promoters. Semi-quantitative PCR analysis of Asupina and Cavendish psy1 and psy2a transcripts showed that psy2a levels were high in green fruit and decreased during ripening, reinforcing the hypothesis that fruit pVA levels were largely dependent on levels of psy2a expression. Additionally, semi-quantitative PCR using intron-spanning primers indicated that high levels of unprocessed psy2a and psy2b mRNA were present in the ripe fruit of Cavendish but not in Asupina. This raised the possibility that differences in intron processing may influence pVA accumulation in Asupina and Cavendish. In this study the role of PSY in banana pVA accumulation was analysed at a number of different levels. Both mRNA accumulation and promoter activity of psy genes studied were very similar between Asupina and Cavendish. However, in several experiments there was evidence of cryptic or alternate splicing that differed in Cavendish compared to Asupina, although these differences were not conclusively linked to the differences in fruit pVA accumulation between Asupina and Cavendish. Therefore, other carotenoid biosynthetic genes or regulatory mechanisms may be involved in determining pVA levels in these cultivars. This study has contributed to an increased understanding of the role of PSY in the production of pVA carotenoids in banana fruit, corroborating the importance of this enzyme in regulating carotenoid production. Ultimately, this work may serve to inform future research into pVA accumulation in important crop varieties such as the EAHB and the discovery of avenues to improve such crops through genetic modification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carotenoids occur in all photosynthetic organisms where they protect photosystems from auto-oxidation, participate in photosynthetic energy-transfer and are secondary metabolites. Of the more than 600 known plant carotenoids, few can be converted into vitamin A by humans and so these pro-vitamin A carotenoids (pVAC) are important in human nutrition. Phytoene synthase (PSY) is a key enzyme in the biosynthetic pathway of pVACs and plays a central role in regulating pVAC accumulation in the edible portion of crop plants. Bananas are a major commercial crop and serve as a staple crop for more than 30 million people. There is natural variation in fruit pVAC content across different banana cultivars, but this is not well understood. Therefore, we isolated PSY genes from banana cultivars with relatively high (cv. Asupina) and low (cv. Cavendish) pVAC content. We provide evidence that PSY in banana is encoded by two paralogs (PSY1 and PSY2), each with a similar gene structure to homologous genes in other monocots. Further, we demonstrate that PSY2 is more highly expressed in fruit pulp compared to leaf. Functional analysis of PSY1 and PSY2 in rice callus and E. coli demonstrate that both genes encode functional enzymes, and that Asupina PSYs have approximately twice the enzymatic activity of the corresponding Cavendish PSYs. These results suggest that differences in PSY enzyme activity contribute significantly to the differences in Asupina and Cavendish fruit pVAC content. Importantly, Asupina PSY genes could potentially be used to generate new cisgenic or intragenic banana cultivars with enhanced pVAC content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Banana is a staple crop in many regions where vitamin A deficiency is prevalent, making it a target for provitamin A biofortification. However, matrix effects may limit provitamin A bioavailability from bananas. The retinol bioefficacies of unripe and ripe bananas (study 1A), unripe high-provitamin A bananas (study 1B), and raw and cooked bananas (study 2) were determined in retinol-depleted Mongolian gerbils (n = 97/study) using positive and negative controls. After feeding a retinol-deficient diet for 6 and 4 wk in studies 1 and 2, respectively, customized diets containing 60, 30, or 15% banana were fed for 17 and 13 d, respectively. In study 1A, the hepatic retinol of the 60% ripe Cavendish group (0.52 ± 0.13 μmol retinol/liver) differed from baseline (0.65 ± 0.15 μmol retinol/liver) and was higher than the negative control group (0.39 ± 0.16 μmol retinol/liver; P < 0.0065). In study 1B, no groups differed from baseline (0.65 ± 0.15 μmol retinol/liver; P = 0.20). In study 2, the 60% raw Butobe group (0.68 ± 0.17 μmol retinol/liver) differed from the 60% cooked Butobe group (0.87 ± 0.24 μmol retinol/liver); neither group differed from baseline (0.80 ± 0.27 μmol retinol/liver; P < 0.0001). Total liver retinol was higher in the groups fed cooked bananas than in those fed raw (P = 0.0027). Body weights did not differ even though gerbils ate more green, ripe, and raw bananas than cooked, suggesting a greater indigestible component. In conclusion, thermal processing, but not ripening, improves the retinol bioefficacy of bananas. Food matrix modification affects carotenoid bioavailability from provitamin A biofortification targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigated the basis for massive differences in provitamin A carotenoid content in banana fruits. Rather than gene expression levels, carotenoid storage capacity and product degradation explained much of the differences. Such information should provide important insights for future developments in the biofortification of banana. A high carotenoid-containing cultivar, 'Asupina' and a popular commercial but low carotenoid-containing cultivar, 'Cavendish' were used in the investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Uganda, a significant proportion of the population depends on the micronutrient poor East African highland banana as a food staple. Consequently, micronutrient deficiencies such as vitamin A deficiency are an important health concern in the country. To reach most vulnerable rural poor populations, staple crops can be biofortified with essential micronutrients though conventional breeding or genetic engineering. This thesis provided proof of concept that genetically modified East African highland bananas with enhanced provitamin A levels can be generated and fully characterised in Uganda. In addition, provitamin A levels present in popular banana varieties was documented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigated the basis for availability of iron (Fe) and zinc (Zn) content in different banana fruits grown in Uganda and Australia. Rather than micronutrient content levels in different banana cultivar, genotype and environment interactions explained much of the differences. Such information should provide important insights for future developments in the biofortification of banana. Bananas consumed in Uganda did not contain sufficient levels of Fe and Zn that meet the nutrient requirements for vulnerable groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulation of carotenoid biosynthesis in a high-carotenoid-accumulating Fe’i group Musa cultivar, “Asupina”, has been examined and compared to that of a low-carotenoid-accumulating cultivar, “Cavendish”, to understand the molecular basis underlying carotenogenesis during banana fruit development. Comparisons in the accumulation of carotenoid species, expression of isoprenoid genes, and product sequestration are reported. Key differences between the cultivars include greater carotenoid cleavage dioxygenase 4 (CCD4) expression in “Cavendish” and the conversion of amyloplasts to chromoplasts during fruit ripening in “Asupina”. Chromoplast development coincided with a reduction in dry matter content and fruit firmness. Chromoplasts were not observed in “Cavendish” fruits. Such information should provide important insights for future developments in the biofortification and breeding of banana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient Se biofortification programs require a thorough understanding of the accumulation and distribution of Se species within the rice grain. Therefore, the translocation of Se species to the filling grain and their spatial unloading were investigated. Se species were supplied via cut flag leaves of intact plants and excised panicle stems subjected to a +/- stem-girdling treatment during grain fill. Total Se concentrations in the flag leaves and grain were quantified by inductively coupled plasma mass spectrometry. Spatial accumulation was investigated using synchrotron X-ray fluorescence microtomography. Selenomethionine (SeMet) and selenomethylcysteine (SeMeSeCys) were transported to the grain more efficiently than selenite and selenate. SeMet and SeMeSeCys were translocated exclusively via the phloem, while inorganic Se was transported via both the phloem and xylem. For SeMet- and SeMeSeCys-fed grain, Se dispersed throughout the external grain layers and into the endosperm and, for SeMeSeCys, into the embryo. Selenite was retained at the point of grain entry. These results demonstrate that the organic Se species SeMet and SeMeSeCys are rapidly loaded into the phloem and transported to the grain far more efficiently than inorganic species. Organic Se species are distributed more readily, and extensively, throughout the grain than selenite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For up to 1 billion people worldwide, insufficient dietary intake of selenium (Se) is a serious health constraint Cereals are the dominant Se source for those on low protein diets, as typified by the global malnourished population. With crop Se content constrained largely by underlying geology, regional soil Se variations are often mirrored by their locally grown staples. Despite this, the Se concentrations of much of the world's rice, the mainstay of so many, is poorly characterized, for both total Se content and Se speciation. In this study, 1092 samples of market sourced polished rice were obtained. The sampled rice encompassed dominant rice producing and exporting countries. Rice from the U.S. and India were found to be the most enriched, while mean average levels were lowest in Egyptian rice: similar to 32-fold less than their North American equivalents. By weighting country averages by contribution to either global production or export, modeled baseline values for both were produced. Based on a daily rice consumption of 300 g day(-1), around 75% of the grains from the production and export pools would fail to provide 70% of daily recommended Se intakes. Furthermore, Se localization and speciation characterization using X-ray fluorescence (mu-XRF) and X-ray absorption near edge structure (mu-XANES) techniques were investigated in a Se-rich sample. The results revealed that the large majority of Se in the endosperm was present in organic forms.