999 resultados para Beta-casein


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The relationship between somatic cell count (SCC) in raw milk and casein fractions of 15 batches of the corresponding ultra-high-temperature (UHT) milk was examined. Raw milk was collected, pasteurised and submitted to UHT treatment. Samples of the UHT milk were taken on days 8, 30, 60, 90 and 120 of storage at room temperature and their casein fractions analysed by high performance liquid chromatography. SCC ranged from 197,000 to 800,000 cells/mL. No correlation (p>0.05) was found between SCC and K-casein concentrations in raw or UHT milks. The alpha(s2) and P-casein concentrations in raw milk were negatively correlated with SCC (p<0.05). In UHT milk, negative correlations were observed for a,1-casein (p<0.05) and beta-casein (p<0.05) on the 8th day, and for alpha S-2-casein (p<0.01) on the 60th day of storage. Results indicate that higher SSC in raw milk is associated with substantial degradation of beta-casein and alpha(s)-casein, which may lead to quality defects in UHT milk during storage. Aust. J. Dairy Technol. 63, 45-49

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using a milk-cell cDNA sequencing approach we characterised milk-protein sequences from two monotreme species, platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus) and found a full set of caseins and casein variants. The genomic organisation of the platypus casein locus is compared with other mammalian genomes, including the marsupial opossum and several eutherians. Physical linkage of casein genes has been seen in the casein loci of all mammalian genomes examined and we confirm that this is also observed in platypus. However, we show that a recent duplication of β-casein occurred in the monotreme lineage, as opposed to more ancient duplications of α-casein in the eutherian lineage, while marsupials possess only single copies of α- and β-caseins. Despite this variability, the close proximity of the main α- and β-casein genes in an inverted tail-tail orientation and the relative orientation of the more distant kappa-casein genes are similar in all mammalian genome sequences so far available. Overall, the conservation of the genomic organisation of the caseins indicates the early, pre-monotreme development of the fundamental role of caseins during lactation. In contrast, the lineage-specific gene duplications that have occurred within the casein locus of monotremes and eutherians but not marsupials, which may have lost part of the ancestral casein locus, emphasises the independent selection on milk provision strategies to the young, most likely linked to different developmental strategies. The monotremes therefore provide insight into the ancestral drivers for lactation and how these have adapted in different lineages.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mozzarella cheese is traditionally prepared from bubaline (Bubalus bubalis) milk, but product adulteration occurs mainly by addition of or full substitution by bovine milk. The aim of this study was to show the usefulnes of molecular markers to identify the admixture of bovine milk to bubaline milk during the manufacturing process of mozzarella cheese. Samples of mozzarella cheese were produced by adding seven different concentrations of bovine milk: 0%, 1%, 2%, 5%, 8%, 12% and 100%. DNA extracted from somatic cells found in cheese were submitted to PCR-RFLP analysis of casein genes: α-s1-CN - CSN1S1 that encompasses 954 bp from exon VII to intron IX (AluI and HinfI), β-CN - CSN2 including 495 bp of exon VII (Hae III and HinfI), and κ-CN - CSN3, encompassing 373 bp of exon IV (AluI and HindIII). Our results indicate that Hae III-RFLP of CSN2exon VII can be used as a molecular marker to detect the presence of bovine milk in mozzarella cheese. Copyright © 2008, Sociedade Brasileira de Genética.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Conserved Wnt ligands are critical for signalling during development; however, various factors modulate their activity. Among these factors are the Secreted Frizzled-Related Proteins (SFRP). We previously isolated the SFRP-4 gene from an involuting rat mammary gland and later showed that transgenic mice inappropriately expressing SFRP-4 during lactation exhibited a high level of apoptosis with reduced survival of progeny. RESULTS: In order to address the questions related to the mechanism of Wnt signalling and its inhibition by SFRP-4 which we report here, we employed partially-purified Wnt-3a in a co-culture model system. Ectopic expression of SFRP-4 was accomplished by infection with a pBabepuro construct. The co-cultures comprised Line 31E mouse mammary secretory epithelial cells and Line 30F, undifferentiated, fibroblast-like mouse mammary cells. In vitro differentiation of such co-cultures can be demonstrated by induction of the beta-casein gene in response to lactogenic hormones.We show here that treatment of cells with partially-purified Wnt-3a initiates Dvl-3, Akt/PKB and GSK-3beta hyperphosphorylation and beta-catenin activation. Furthermore, while up-regulating the cyclin D1 and connexin-43 genes and elevating transepithelial resistance of Line 31E cell monolayers, Wnt-3a treatment abrogates differentiation of co-cultures in response to the lactogenic hormones prolactin, insulin and glucocorticoid. Cells which express SFRP-4, however, are largely unaffected by Wnt-3a stimulation. Since a physical association between Wnt-3a and SFRP-4 could be demonstrated with immunoprecipitation/Western blotting experiments, this interaction, presumably owing to the Frizzled homology region typical of all SFRPs, explains the refractory response to Wnt-3a which was observed. CONCLUSION: This study demonstrates that Wnt-3a treatment activates the Wnt signalling pathway and interferes with in vitro differentiation of mammary co-cultures to beta-casein production in response to lactogenic hormones. Similarly, in another measure of differentiation, following Wnt-3a treatment mammary epithelial cells could be shown to up-regulate the cyclin D1 and connexin-43 genes while phenotypically they show increased transepithelial resistance across the cell monolayer. All these behavioural changes can be blocked in mammary epithelial cells expressing SFRP-4. Thus, our data illustrate in an in vitro model a mechanism by which SFRP-4 can modulate a differentiation response to Wnt-3a.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Visualisation of multiple isoforms of kappa-casein on 2-D gels is restricted by the abundant alpha- and beta-caseins that not only limit gel loading but also migrate to similar regions as the more acidic kappa-casein isoforms. To overcome this problem, we took advantage of the absence of cysteine residues in alpha(S1)- and beta-casein by devising an affinity enrichment procedure based on reversible biotinylation of cysteine residues. Affinity capture of cysteine-containing proteins on avidin allowed the removal of the vast majority of alpha(S1)- and beta-casein, and on subsequent 2-D gel analysis 16 gel spots were identified as kappa-casein by PMF. Further analysis of the C-terminal tryptic peptide along with structural predictions based on mobility on the 2-D gel allowed us to assign identities to each spot in terms of genetic variant (A or B), phosphorylation status (1, 2 or 3) and glycosylation status (from 0 to 6). Eight isoforms of the A and B variants with the same PTMs were observed. When the casein fraction of milk from a single cow, homozygous for the B variant of kappa-casein, was used as the starting material, 17 isoforms from 13 gel spots were characterised. Analysis of isoforms of low abundance proved challenging due to the low amount of material that could be extracted from the gels as well as the lability of the PTMs during MS analysis. However, we were able to identify a previously unrecognised site, T-166, that could be phosphorylated or glycosylated. Despite many decades of analysis of milk proteins, the reasons for this high level of heterogeneity are still not clear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of fortification of skim milk powder and sodium caseinate on Cheddar cheeses was investigated. SMP fortification led to decreased moisture, increased yield, higher numbers of NSLAB and reduced proteolysis. The functional and texture properties were also affected by SMP addition and formed a harder, less meltable cheese than the control. NaCn fortification led to increased moisture, increased yield, decreased proteolysis and higher numbers of NSLAB. The functional and textural properties were affected by fortification with NaCn and formed a softer cheese that had similar or less melt than the control. Reducing the lactose:casein ratio of Mozzarella cheese by using ultrafiltration led to higher pH, lower insoluble calcium, lower lactose, galactose and lactic acid levels in the cheese. The texture and functional properties of the cheese was affected by varying the lactose:casein ratio and formed a harder cheese that had similar melt to the control later in ripening. The flavour and bake properties were also affected by decreased lactose:casein ratio; the cheeses had lower acid flavour and blister colour than the control cheese. Varying the ratio of αs1:β-casein in Cheddar cheese affected the texture and functionality of the cheese but did not affect insoluble calcium, proteolysis or pH. Increasing the ratio of αs1:β-casein led to cheese with lower meltability and higher hardness without adverse effects on flavour. Using camel chymosin in Mozzarella cheese instead of calf chymosin resulted in cheese with lower proteolysis, higher softening point, higher hardness and lower blister quantity. The texture and functional properties that determine the shelf life of Mozzarella were maintained for a longer ripening period than when using calf chymosin therefore increasing the window of functionality of Mozzarella. In summary, the results of the trials in this thesis show means of altering the texture, functional, rheology and sensory properties of Mozzarella and Cheddar cheeses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) is an intestinal hormone with well-established glucose-lowering activity. The in vitro and in vivo actions of natural putative secretagogues of GLP-1 were investigated. The acute GLP-1 releasing activity of olive leaf extract (OLE), glutamine (GLN), alpha casein (ACAS), beta casein (BCAS) and chlorogenic acid (CGA) were assessed in STC-1 cells and C57BL/6 mice. All compounds except ACAS significantly increased acute in vitro GLP-1 secretion (66-386%; P

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: The study of peptidase, esterase and caseinolytic activity of Lactobacillus paracasei subsp. paracasei, Debaryomyces hansenii and Sacchromyces cerevisiae isolates from Feta cheese brine. Methods and Results: Cell-free extracts from four strains of Lact. paracasei subsp. paracasei, four strains of D. hansenii and three strains of S. cerevisiae, isolated from Feta cheese brine were tested for their proteolytic and esterase enzyme activities. Lactobacillus paracasei subsp. paracasei strains had intracellular aminopeptidase, dipeptidyl aminopeptidase, dipeptidase, endopeptidase and carboxypeptidase activities. Esterases were detected in three of four strains of lactobacilli and their activities were smaller with higher molecular weight fatty acids. The strains of yeasts did not exhibit endopeptidase as well as dipeptidase activities except on Pro-Leu. Their intracellular proteolytic activity was higher than that of lactobacilli. Esterases from yeasts preferentially degraded short chain fatty acids. Lactobacilli degraded preferentially beta-casein. Caseinolytic activity of yeasts was higher than that of lactobacilli. Conclusions: The results suggest that Lact. paracasei subsp. paracasei and yeasts may contribute to the development of flavour in Feta cheese. Significance and impact of the Study: Selected strains could be used as adjunct starters to make high quality Feta cheese.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study demonstrated that both chymosin and salt-in-moisture (SM) were important factors for proteolysis in the manufacture of ultrafiltrated white-salted cheese, with significant effects on water-soluble nitrogen and nitrogen soluble in trichloroacetic acid. In contrast, the levels of free amino acids were not significantly affected by chymosin and salt treatments. The cheeses made using high levels of chymosin with low SM had lower levels of residual α(s1)- and β-casein at the end of ripening. On texture profile analysis, the hardness and fracturability of the cheeses significantly increased with SM and decreased during ripening. Increases in chymosin significantly contributed to the overall weakening of the structure throughout ripening. Bitter flavour was detected after 12 weeks in the cheese made with the higher chymosin level and lower SM, which could be the result of accumulation of γ-casein fractions. The sensory data indicated that the hedonic responses for low chymosin with low SM cheeses were good and acceptable in flavour, which may be due to the moderate levels of proteolysis products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

beta-Casein and alpha-casein showed radical-scavenging activities in aqueous solution, whereas bovine serum albumin (BSA), alpha-lactalbumin and P-lactoglobulin showed much weaker antioxidant activity, when assessed by the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical-scavenging assay. However, beta-casein and alpha-casein showed reduced antioxidant activity after storage at 30 degrees C. An increase in radical- scavenging activity and a fall in fluorescence of the protein component were evident after 6 h, when BSA, beta-lactoglobulin or casein were mixed with EGCG, and excess EGCG was removed, indicating the formation of a complex with this protein on mixing. Storage of all the proteins with EGCG at 30 degrees C caused an increase in the antioxidant activity of the isolated protein component after separation from excess EGCG. This showed that EGCG was reacting with the proteins and that the protein-bound catechin had antioxidant properties. The reaction of EGCG with BSA, casein and beta-lactoglobulin was confirmed by the loss of fluorescence of the protein on storage, and the increase in UV absorbance between 250 and 400 nm. The increase in antioxidant activity of BSA after storage with EGCG was confirmed by the ferric reducing antioxidant potential (FRAP) and the oxygen radical antioxidant capacity (ORAC) assays. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Defatted rumen protein and soy protein concentrate were extruded in a 15.5:1 L/D single-screw extruder at the optimum conditions for their expansion (150A degrees C and 35% moisture, and 130A degrees C and 35% moisture, respectively). Emulsions were produced with these proteins and studied by rheology and time domain low-resolution (1)H nuclear magnetic resonance (TD-NMR). Extrusion increased storage modulus of rumen protein emulsions. The opposite was observed for soy protein. Mechanical relaxation showed the existence of three relaxing components in the emulsions whose relative contributions were changed by extrusion. Likewise, spin-spin relaxation time constants (T (2)) measured by TD-NMR also showed three major distinct populations of protons in respect to their mobility that were also altered by extrusion. Extrusion increased surface hydrophobicity of both rumen and soy protein. Solubility of rumen protein increased with extrusion whereas soy protein had its solubility decreased after processing. Extrusion promoted molecular reorganization of protein, increasing its superficial hydrophobicity, affecting its interfacial properties and improving its emulsifying behavior. The results show that extrusion can promote the use of rumen, a by-product waste from the meat industry, in human nutrition by replacing soy protein in food emulsions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Triplet-excited riboflavin ((3)RF*) was found by laser flash photolysis to be quenched by polyunsaturated fatty acid methyl esters in tert-butanol/water (7:3, v/v) in a second-order reaction with k similar to 3.0 x 10(5) L mol(-1) s(-1) at 25 degrees C for methyl linoleate and 3.1 x 10(6) L mol(-1) s(-1), with Delta H double dagger = 22.6 kJ mol(-1) and Delta S double dagger = -62.3 J K(-1) mol(-1), for methyl linolenate in acetonitrile/water (8:2, v/v). For methyl oleate, k was <10(4) L mol(-1) s(-1). For comparison, beta-casein was found to have a rate constant k similar to 4.9 x 10(8) L mol(-1) s(-1). Singlet-excited flavin was not quenched by the esters as evidenced by insensitivity of steady-state fluorescence to their presence. Density functional theory (DFT) calculations showed that electron transfer from unsaturated fatty acid esters to triplet-excited flavins is endergonic, while a formal hydrogen atom transfer is exergonic (Delta G(HAT)degrees = -114.3, -151.2, and -151.2 kJ mol(-1) for oleate, linoleate, and linolenate, respectively, in acetonitrile). The reaction is driven by acidity of the lipid cation radical for which a pK(a) similar to -0.12 was estimated by DFT calculations. Absence of electrochemical activity in acetonitrile during cyclic voltammetry up to 2.0 V versus NHE confirmed that Delta G(ET)degrees > 0 for electron transfer. Interaction of methyl esters with (3)RF* is considered as initiation of the radical chain, which is subsequently propagated by combination reactions with residual oxygen. In this respect, carbon-centered and alkoxyl radicals were detected using the spin trapping technique in combination with electron paramagnetic resonance spectroscopy. Moreover, quenching of 3RF* yields, directly or indirectly, radical species which are capable of initiating oxidation in unsaturated fatty acid methyl esters. Still, deactivation of triplet-excited flavins by lipid derivatives was slower than by proteins (factor up to 10(4)), which react preferentially by electron transfer. Depending on the reaction environment in biological systems (including food), protein radicals are expected to interfere in the mechanism of light-induced lipid oxidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cultured human breast carcinoma cell lines are important models for investigating the pathogenesis of breast cancer. Their use, however, is limited because of loss of expression of breast-specific markers and the development of a dedifferentiated phenotype after continuous culture. PMC42 is a unique human breast carcinoma line, previously shown to express secretory and myoepithelial markers. We have induced PMC42 cells to form hollow organoids in culture, similar to in vivo breast structures, using a combination of hormones including estrogen, progesterone, dexamethasone, insulin, and prolactin in combination with a permeable extracellular matrix. The organoids comprised polarized cells located around a central lumen. Expression of β-casein was demonstrated in cells within organoids using reverse transcriptase-polymerase chain reaction, Western blot analysis, and confocal immunofluorescence. In this in vitro system, milk-specific gene expression was induced through hormone and matrix interactions which may be similar to those operating in vivo. PMC42 is a novel model for investigations into the molecular mechanisms of carcinogenesis and differentiation in the human breast.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies using the mouse showed an inverse correlation between the Caveolin 1 gene expression and lactation, and this was regulated by prolactin. However, current study using mammary explants from pregnant mice showed that while insulin (I), cortisol (F) and prolactin (P) resulted in maximum induction of the β-casein gene, FP and IFP resulted in the downregulation of Caveolin 1. Additionally, IF, FP and IFP resulted in the downregulation of Caveolin 2. Immunohistochemistry confirmed localisation of Caveolin 1 specific to myoepithelial cells and adipocytes. Comparative studies with the tammar wallaby showed Caveolin 1 and 2 had 70-80% homology with the mouse proteins. However, in contrast to the mouse, Caveolin 1 and 2 genes showed a significantly increased level of expression in the mammary gland during lactation. The regulation of tammar Caveolin 1 and 2 gene expression was examined in mammary explants from pregnant tammars, and no significant difference was observed either in the absence or in the presence of IFP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The colostrum trypsin inhibitor (CTI) gene and transcript were cloned from the Cape fur seal mammary gland and CTI identified by in silico analysis of the Pacific walrus and polar bear genomes (Order Carnivora), and in marine and terrestrial mammals of the Orders Cetartiodactyla (yak, whales, camel) and Perissodactyla (white rhinoceros). Unexpectedly, Weddell seal CTI was predicted to be a pseudogene. Cape fur seal CTI was expressed in the mammary gland of a pregnant multiparous seal, but not in a seal in its first pregnancy. While bovine CTI is expressed for 24-48h postpartum (pp) and secreted in colostrum only, Cape fur seal CTI was detected for at least 2-3months pp while the mother was suckling its young on-shore. Furthermore, CTI was expressed in the mammary gland of only one of the lactating seals that was foraging at-sea. The expression of β-casein (CSN2) and β-lactoglobulin II (LGB2), but not CTI in the second lactating seal foraging at-sea suggested that CTI may be intermittently expressed during lactation. Cape fur seal and walrus CTI encode putative small, secreted, N-glycosylated proteins with a single Kunitz/bovine pancreatic trypsin inhibitor (BPTI) domain indicative of serine protease inhibition. Mature Cape fur seal CTI shares 92% sequence identity with Pacific walrus CTI, but only 35% identity with BPTI. Structural homology modelling of Cape fur seal CTI and Pacific walrus trypsin based on the model of the second Kunitz domain of human tissue factor pathway inhibitor (TFPI) and porcine trypsin (Protein Data Bank: 1TFX) confirmed that CTI inhibits trypsin in a canonical fashion. Therefore, pinniped CTI may be critical for preventing the proteolytic degradation of immunoglobulins that are passively transferred from mother to young via colostrum and milk.