902 resultados para Bastonetes Gram positivos irregulares. 16S rRNA. Genes housekeeping.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ninety strains of a collection of well-identified clinical isolates of gram-negative nonfermentative rods collected over a period of 5 years were evaluated using the new colorimetric VITEK 2 card. The VITEK 2 colorimetric system identified 53 (59%) of the isolates to the species level and 9 (10%) to the genus level; 28 (31%) isolates were misidentified. An algorithm combining the colorimetric VITEK 2 card and 16S rRNA gene sequencing for adequate identification of gram-negative nonfermentative rods was developed. According to this algorithm, any identification by the colorimetric VITEK 2 card other than Achromobacter xylosoxidans, Acinetobacter sp., Burkholderia cepacia complex, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia should be subjected to 16S rRNA gene sequencing when accurate identification of nonfermentative rods is of concern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Riemerella anatipestifer, the causative agent of septicemia anserum exsudativa (also called new duckling disease), belongs to the family Flavobacteriaceae of gram-negative bacteria. We determined the DNA sequences of the rrs genes encoding the 16S rRNAs of four R. anatipestifer strains by directly sequencing PCR-amplified rrs genes. A sequence similarity analysis confirmed the phylogenetic position of R. anatipestifer in the family Flavobacteriaceae in rRNA superfamily V and allowed fine mapping of R. anatipestifer on a separate rRNA branch comprising the most closely related species, Bergeyella zoohelcum, as well as Chryseobacterium balustinum, Chryseobacterium indologenes, and Chryseobacterium gleum. The sequences of the rrs genes of the four R. anatipestifer strains varied between 0.5 and 1.0%, but all of the strains occupied the same position on the phylogenetic tree. In general, differences in rrs genes were observed among R. anatipestifer strains, even within a given serotype, as shown by restriction fragment length polymorphism of PCR-amplified rrs genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aminoglycosides and beta-lactams are used for the treatment of a wide range of infections due to both Gram-negative and Gram-positive. An emerging aminoglycoside resistance mechanism, methylation of the aminoacyl site of the 16S rRNA, confers high-level resistance to clinically important aminoglycosides such as amikacin, tobramycin and gentamicin. Eight 16S rRNA methyltransferase genes, armA, rmtA, rmtB, rmtC, rmtD, rmtE, rmtF and npmA, have been identified in several species of enterobacteria worldwide (2, 6, 7, 9, 11, 13, 14). Resistance to extended spectrum β-lactams remains additionally an important clinical problem. Apart from the large TEM, SHV, and CTX-M families, several other extended-spectrum β-lactamases (ESBLs) have been identified, including VEB enzymes, which confer high-level resistance to cephalosporins and monobactams. Although 16S rRNA methyltransferases have been frequently identified associated with different ESBLs, there has been no report of association of a 16S rRNA methyltransferase with a VEB enzyme, except for the identification of rmtC with blaVEB-6 (14)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on partial sequences of the 12S and 16S ribosomal RNA genes, we estimated phylogenetic relationships among brown frogs of the Rana temporaria group from China. From the phylogenetic trees obtained, we propose to include Rana zhengi in the brown frog

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular diagnosis is playing an increasingly important role in the rapid detection and identification of pathogenic organisms in clinical samples. The genetic variation of ribosomal genes in bacteria offers an alternative to culturing for the detection and identification of these organisms. Here 16S rRNA and 16S-23S rRNA spacer region genes were chosen as the amplified targets for single-strand conformation polymorphism (SSCP) and restriction fragment length polymorphism (RFLP) capillary electrophoresis analysis and bacterial identification. The multiple fluorescence based SSCP method for the 16S rRNA gene and the RFLP method for the 16S-23S rRNA spacer region gene were developed and applied to the identification of pathogenic bacteria in clinical samples, in which home-made short-chained linear polyacrylamide (LPA) was used as a sieving matrix; a higher sieving capability and shorter analysis time were achieved than with a commercial sieving matrix because of the simplified template preparation procedure. A set of 270 pathogenic bacteria representing 34 species in 14 genera were analyzed, and a total of 34 unique SSCP patterns representing 34 different pathogenic bacterial species were determined. Based on the use of machine code to represent peak patterns developed in this paper, the identification of bacterial species becomes much easier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/aim: The purpose of this study was to determine the bacterial diversity in the subgingival plaque of subjects with generalized aggressive periodontitis by using culture-independent molecular methods based on 16S ribosomal DNA cloning. Methods: Samples from 10 subjects with generalized aggressive periodontitis were selected. DNA was extracted and the 16S rRNA gene was amplified with the universal primer pairs 9F and 1525R. Amplified genes were cloned, sequenced, and identified by comparison with known 16S rRNA sequences. Results: One hundred and ten species were identified from 10 subjects and 1007 clones were sequenced. Of these, 70 species were most prevalent. Fifty-seven percent of the clone (40 taxa) sequences represented phylotypes for which no cultivated isolates have been reported. Several species of Selenomonas and Streptococcus were found at high prevalence and proportion in all subjects. Overall, 50% of the clone libraries were formed by these two genera. Selenomonas sputigena, the species most commonly detected, was found in nine of 10 subjects. Other species of Selenomonas were often present at high levels, including S. noxia, Selenomonas sp. EW084, Selenomonas sp. EW076, Selenomonas FT050, Selenomonas sp. P2PA_80, and Selenomonas sp. strain GAA14. The classical putative periodontal pathogens, such as, Aggregatibacter actinomycetemcomitans, was below the limit of detection and was not detected. Conclusion: These data suggest that other species, notably species of Selenomonas, may be associated with disease in generalized aggressive periodontitis subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parvimonas micra are gram positive anaerobic cocci isolated from the oral cavity and frequently related to polymicrobial infections in humans. Despite reports about phenotypic differences, the genotypic variation of P. micra and its role in virulence are still not elucidated. The aim of this study was to determine the genotypic diversity of P. micra isolates obtained from the subgingival biofilm of subjects with different periodontal conditions and to correlate these findings with phenotypic traits. Three reference strains and 35 isolates of P. micro were genotyped by 16S rRNA PCR-RFLP and phenotypic traits such as collagenase production, elastolytic and hemolytic activities were evaluated. 16S rRNA PCR-RFLP showed that P. micra could be grouped into two main clusters: C1 and C2; cluster C1 harbored three genotypes (HG1259-like, HG1467-like and ICBM0583-like) while cluster C2 harbored two genotypes (ATC03270-like and ICBM036). A wide variability in collagenolytic activity intensities was observed among all isolates, while elastolytic activity was detected in only two isolates. There was an association between hemolytic activity in rabbit erythrocytes and cluster C2. There was an association between hemolytic activity in rabbit erythrocytes and cluster C1. Although these data suggest a possible association between P. micra genetic diversity and their pathogenic potential, further investigations are needed to confirm this hypothesis. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we determined the analytical sensitivities of broad-range real-time PCR-based assays employing one of three different genomic DNA extraction protocols in combination with one of three different primer pairs targeting the 16S rRNA gene to detect a panel of 22 bacterial species. DNA extraction protocol III, using lysozyme, lysostaphin, and proteinase K, followed by PCR with the primer pair Bak11W/Bak2, giving amplicons of 796 bp in length, showed the best overall sensitivity, detecting DNA of 82% of the strains investigated at concentrations of < or =10(2) CFU in water per reaction. DNA extraction protocols I and II, using less enzyme treatment, combined with other primer pairs giving shorter amplicons of 466 bp and 342 or 346 bp, respectively, were slightly more sensitive for the detection of gram-negative but less sensitive for the detection of gram-positive bacteria. The obstacle of detecting background DNA in blood samples spiked with bacteria was circumvented by introducing a broad-range hybridization probe, and this preserved the minimal detection limits observed in samples devoid of blood. Finally, sequencing of the amplicons generated using the primer pair Bak11W/Bak2 allowed species identification of the detected bacterial DNA. Thus, broad-spectrum PCR targeting the 16S rRNA gene in the quantitative real-time format can achieve an analytical sensitivity of 1 to 10 CFU per reaction in water, avoid detection of background DNA with the introduction of a broad-range probe, and generate amplicons that allow species identification of the detected bacterial DNA by sequencing. These prerequisites are important for its application to blood-containing patient samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic relationships among bacterial strains belonging to the genus Aeromonas were inferred from 16S rRNA, gyrB and rpoB gene sequences. Twenty-eight type or collection strains of the recognized species or subspecies and 33 Aeromonas strains isolated from human and animal specimens as well as from environmental samples were included in the study. As reported previously, the 16S rRNA gene sequence is highly conserved within the genus Aeromonas, having only limited resolution for this very tight group of species. Analysis of a 1.1 kb gyrB sequence confirmed that this gene has high resolving power, with maximal interspecies divergence of 15.2 %. Similar results were obtained by sequencing only 517 bp of the rpoB gene, which showed maximal interspecies divergence of 13 %. The topologies of the gyrB- and rpoB-derived trees were similar. The results confirm the close relationship of species within the genus Aeromonas and show that a phylogenetic approach including several genes is suitable for improving the complicated taxonomy of the genus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current global phylogenies are built predominantly on rRNA sequences. However, an experimental system for studying the evolution of rRNA is not readily available, mainly because the rRNA genes are highly repeated in most experimental organisms. We have constructed an Escherichia coli strain in which all seven chromosomal rRNA operons are inactivated by deletions spanning the 16S and 23S coding regions. A single E. coli rRNA operon carried by a multicopy plasmid supplies 16S and 23S rRNA to the cell. By using this strain we have succeeded in creating microorganisms that contain only a foreign rRNA operon derived from either Salmonella typhimurium or Proteus vulgaris, microorganisms that have diverged from E. coli about 120–350 million years ago. We also were able to replace the E. coli rRNA operon with an E. coli/yeast hybrid one in which the GTPase center of E. coli 23S rRNA had been substituted by the corresponding domain from Saccharomyces cerevisiae. These results suggest that, contrary to common belief, coevolution of rRNA with many other components in the translational machinery may not completely preclude the horizontal transfer of rRNA genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epsilon enhancer element is a pyrimidine-rich sequence that increases expression of T7 gene 10 and a number of Escherichia coli mRNAs during initiation of translation and inhibits expression of the recF mRNA during elongation. Based on its complementarity to the 460 region of 16S rRNA, it has been proposed that epsilon exerts its enhancer activity by base pairing to this complementary rRNA sequence. We have tested this model of enhancer action by constructing mutations in the 460 region of 16S rRNA and examining expression of epsilon-containing CAT reporter genes and recF–lacZ fusions in strains expressing the mutant rRNAs. Replacement of the 460 E.coli stem–loop with that of Salmonella enterica serovar Typhimurium or a stem–loop containing a reversal of all 8 bp in the helical region produced fully functional rRNAs with no apparent effect on cell growth or expression of any epsilon-containing mRNA. Our experiments confirm the reported effects of the epsilon elements on gene expression but show that these effects are independent of the sequence of the 460 region of 16S rRNA, indicating that epsilon–rRNA base pairing does not occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Avian haemophili demonstrating in vitro satellitic growth, also referred to as the V-factor or NAD requirement, have mainly been classified with Avibacterium paragallinarum (Haemophilus paragallinarum), Avibacterium avium (Pasteurella avium), Avibacterium volantium (Pasteurella volantium) and Avibacterium sp. A (Pasteurella species A). The aim of the present study was to assess the taxonomic position of 18 V-factor-requiring isolates of unclassified Haemophilus-like organisms isolated from galliforme, anseriforme, columbiforme and gruiforme birds as well as kestrels and psittacine birds including budgerigars by conventional phenotypic tests and 16S rRNA gene sequencing. All isolates shared phenotypical characteristics which allowed classification with Pasteurellaceae. Haemolysis of bovine red blood cells was negative. Haemin (X-factor) was not required for growth. Maximum-likelihood phylogenetic analysis including bootstrap analysis showed that six isolates were related to the avian 16S rRNA group and were classified as Avibacterium according to 16S rRNA sequence analysis. Surprisingly, the other 12 isolates were unrelated to Avibacterium. Two isolates were unrelated to any of the known 16S rRNA groups of Pasteurellaceae. Two isolates were related to Volucribacter of the avian 16S rRNA group. Seven isolates belonged to the Testudinis 16S rRNA group and out of these, two isolates were closely related to taxa 14 and 32 of Bisgaard, whereas four other isolates were found to form a genus-like group distantly related to taxon 40 and one isolated remained distantly related to other members of the Testudinis group. One isolate was closely related to taxon 26 (a member of Actinobacillus sensu stricto). The study documented major genetic diversity among V-factor-requiring avian isolates beyond the traditional interpretation that they only belong to Avibacterium, underlining the limited value of satellitic growth for identification of avian members of Pasteurellaceae. Our study also emphasized that these organisms will never be isolated without the use of special media satisfying the V-factor requirement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

My work describes two sectors of the human bacterial environment: 1. The sources of exposure to infectious non-tuberculous mycobacteria. 2. Bacteria in dust, reflecting the airborne bacterial exposure in environments protecting from or predisposing to allergic disorders. Non-tuberculous mycobacteria (NTM) transmit to humans and animals from the environment. Infection by NTM in Finland has increased during the past decade beyond that by Mycobacterium tuberculosis. Among the farm animals, porcine mycobacteriosis is the predominant NTM disease in Finland. Symptoms of mycobacteriosis are found in 0.34 % of slaughtered pigs. Soil and drinking water are suspected as sources for humans and bedding materials for pigs. To achieve quantitative data on the sources of human and porcine NTM exposure, methods for quantitation of environmental NTM are needed. We developed a quantitative real-time PCR method, utilizing primers targeted at the 16S rRNA gene of the genus of Mycobacterium. With this method, I found in Finnish sphagnum peat, sandy soils and mud high contents of mycobacterial DNA, 106 to 107 genome equivalents per gram. A similar result was obtained by a method based on the Mycobacterium-specific hybridization of 16S rRNA. Since rRNA is found mainly in live cells, this result shows that the DNA detected by qPCR mainly represented live mycobacteria. Next, I investigated the occurrence of environmental mycobacteria in the bedding materials obtained from 5 pig farms with high prevalence (>4 %) of mycobacteriosis. When I used for quantification the same qPCR methods as for the soils, I found that piggery samples contained non-mycobacterial DNA that was amplified in spite of several mismatches with the primers. I therefore improved the qPCR assay by designing Mycobacterium-specific detection probes. Using the probe qPCR assay, I found 105 to 107 genome equivalents of mycobacterial DNA in unused bedding materials and up to 1000 fold more in the bedding collected after use in the piggery. This result shows that there was a source of mycobacteria in the bedding materials purchased by the piggery and that mycobacteria increased in the bedding materials during use in the piggery. Allergic diseases have reached epidemic proportions in urbanized countries. At the same time, childhood in rural environment or simple living conditions appears to protect against allergic disorders. Exposure to immunoreactive microbial components in rural environments seems to prevent allergies. I searched for differences in the bacterial communities of two indoor dusts, an urban house dust shown to possess immunoreactivity of the TH2-type and a farm barn dust with TH1-activity. The immunoreactivities of the dusts were revealed by my collaborators, in vitro in human dendritic cells and in vivo in mouse. The dusts accumulated >10 years in the respiratory zone (>1.5 m above floor), thus reflecting the long-term content of airborne bacteria at the two sites. I investigated these dusts by cloning and sequencing of bacterial 16S rRNA genes from dust contained DNA. From the TH2-active urban house dust, I isolated 139 16S rRNA gene clones. The most prevalent genera among the clones were Corynebacterium (5 species, 34 clones), Streptococcus (8 species, 33 clones), Staphylococcus (5 species, 9 clones) and Finegoldia (1 species, 9 clones). Almost all of these species are known as colonizers of the human skin and oral cavity. Species of Corynebacterium and Streptococcus have been reported to contain anti-inflammatory lipoarabinomannans and immunmoreactive beta-glucans respectively. Streptococcus mitis, found in the urban house dust is known as an inducer of TH2 polarized immunity, characteristic of allergic disorders. I isolated 152 DNA clones from the TH1-active farm barn dust and found species quite different from those found from the urban house dust. Among others, I found DNA clones representing Bacillus licheniformis, Acinetobacter lwoffii and Lactobacillus each of which was recently reported to possess anti-allergy immunoreactivity. Moreover, the farm barn dust contained dramatically higher bacterial diversity than the urban house dust. Exposure to this dust thus stimulated the human dendritic cells by multiple microbial components. Such stimulation was reported to promote TH1 immunity. The biodiversity in dust may thus be connected to its immunoreactivity. Furthermore, the bacterial biomass in the farm barn dust consisted of live intact bacteria mainly. In the urban house dust only ~1 % of the biomass appeared as intact bacteria, as judged by microscoping. Fragmented microbes may possess bioactivity different from that of intact cells. This was recently shown for moulds. If this is also valid for bacteria, the different immunoreactivities of the two dusts may be explained by the intactness of dustborne bacteria. Based on these results, we offer three factors potentially contributing to the polarized immunoreactivities of the two dusts: (i) the species-composition, (ii) the biodiversity and (iii) the intactness of the dustborne bacterial biomass. The risk of childhood atopic diseases is 4-fold lower in the Russian compared with the Finnish Karelia. This difference across the country border is not explainable by different geo-climatic factors or genetic susceptibilities of the two populations. Instead, the explanation must be lifestyle-related. It has already been reported that the microbiological quality of drinking water differs on the two sides of the borders. In collaboration with allergists, I investigated dusts collected from homes in the Russian Karelia and in the Finnish Karelia. I found that bacterial 16S rRNA genes cloned from the Russian Karelian dusts (10 homes, 234 clones) predominantly represented Gram-positive taxa (the phyla Actinobacteria and Firmicutes, 67%). The Russian Karelian dusts contained nine-fold more of muramic acid (60 to 70 ng mg-1) than the Finnish Karelian dusts (3 to 11 ng mg-1). Among the DNA clones isolated from the Finnish side (n=231), Gram-negative taxa (40%) outnumbered the Gram-positives (34%). Out of the 465 DNA clones isolated from the Karelian dusts, 242 were assigned to cultured validly described bacterial species. In Russian Karelia, animal-associated species e.g. Staphylococcus and Macrococcus were numerous (27 clones, 14 unique species). This finding may connect to the difference in the prevalence of allergy, as childhood contacts with pets and farm animals have been connected with low allergy risk. Plant-associated bacteria and plant-borne 16S rRNA genes (chloroplast) were frequent among the DNA clones isolated from the Finnish Karelia, indicating components originating from plants. In conclusion, my work revealed three major differences between the bacterial communtites in the Russian and in the Finnish Karelian homes: (i) the high prevalence of Gram-positive bacteria on the Russian side and of Gram-negative bacteria on the Finnish side and (ii) the rich presence of animal-associated bacteria on the Russian side whereas (iii) plant-associated bacteria prevailed on the Finnish side. One or several of these factors may connect to the differences in the prevalence of allergy.