667 resultados para Barley


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root characteristics of seedlings of five different barley genotypes were analysed in 2D using gel chambers, and in 3D using soil sacs that were destructively harvested and pots of soil that were assessed non-invasively using X-ray microtomography. After 5 days, Chime produced the greatest number of root axes (similar to 6) and Mehola significantly less (similar to 4) in all growing methods. Total root length was longest in GSH01915 and shortest in Mehola for all methods, but both total length and average root diameter were significantly larger for plants grown in gel chambers than those grown in soil. The ranking of particular growth traits (root number, root angular spread) of plants grown in gel plates, soil sacs and X-ray pots was similar, but plants grown in the gel chambers had a different order of ranking for root length to the soil-grown plants. Analysis of angles in soil-grown plants showed that Tadmore had the most even spread of individual roots and Chime had a propensity for non-uniform distribution and root clumping. The roots of Mehola were less well spread than the barley cultivars supporting the suggestion that wild and landrace barleys tend to have a narrower angular spread than modern cultivars. The three dimensional analysis of root systems carried out in this study provides insights into the limitations of screening methods for root traits and useful data for modelling root architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative zinc (Zn) efficiencies of 33 wheat and 3 barley cultivars were determined by growing them in chelate-buffered culture solutions. Zn efficiency, determined by growth in a Zn-deficient solution relative to that in a medium containing an adequate concentration of Zn, was found to vary between 10% and 63% among the cultivars tested. Out of the 36 cultivars tested, 12 proved to be Zn efficient, 10 were Zn inefficient, and the remaining 14 varieties were classed as intermediate. The most Zn-efficient cultivars included Bakhtawar, Gatcher S61, Wilgoyne, and Madrigal, and the most Zn inefficient included Durati, Songlen, Excalibur, and Chakwal-86. Zn-efficient cultivars accumulated greater amounts of Zn in their shoots than inefficient cultivars, but the correlation between shoot Zn and shoot dry matter production was poor. All the cultivars accumulated higher concentrations of iron (Fe), copper (Cu), manganese (Mn), and phosphorus (P) at deficient levels of Zn, compared with adequate Zn concentrations. The Zn-inefficient cultivars accumulated higher concentrations of these other elements compared to efficient cultivars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxalate oxidase enzyme expressed in barley roots is a thermostable, protease-resistant enzyme that generates H2O2. It has great medical importance because of its use to assay plasma and urinary oxalate, and it has also been used to generate transgenic, pathogen-resistant crops. This protein has now been purified and three types of crystals grown. X-ray analysis shows that the symmetry present in these crystals is consistent with a hexameric arrangement of subunits, probably a trimer of dimers. This structure may be similar to that found in the related seed storage proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L) were intercropped and sole cropped to compare the effects of crop diversity on the use of nitrogen sources in European organic crop-ping systems. Across a wide range of growing condi-tions pea-barley intercropping showed that nitrogen sources were used from 17 to 31% more efficiently by the intercrop than by the sole crops. Intercropping technologies offers the opportunity for organic cropping systems to utilize N complementarity between component crops, without compromising total crop N yield levels

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complementarity in acquisition of nitrogen (N) from soil and N-2-fixation within pea and barley intercrops was studied in organic field experiments across Western Europe (Denmark, United Kingdom, France, Germany and Italy). Spring pea and barley were sown either as sole crops, at the recommended plant density (P100 and B100, respectively) or in replacement (P50B50) or additive (P100B50) intercropping designs, in each of three cropping seasons (2003-2005). Irrespective of site and intercrop design, Land Equivalent Ratios (LER) between 1.4 at flowering and 1.3 at maturity showed that total N recovery was greater in the pea-barley intercrops than in the sole Crops Suggesting a high degree of complementarity over a wide range of growing conditions. Complementarity was partly attributed to greater soil mineral N acquisition by barley, forcing pea to rely more on N-2-fixation. At all sites the proportion of total aboveground pea N that was derived from N-2-fixation was greater when intercropped with barley than when grown as a sole crop. No consistent differences were found between the two intercropping designs. Simultaneously, the accumulation Of Phosphorous (P), potassium (K) and sulphur (S) in Danish and German experiments was 20% higher in the intercrop (P50B50) than in the respective sole crops, possibly influencing general crop yields and thereby competitive ability for other resources. Comparing all sites and seasons, the benefits of organic pea-barley intercropping for N acquisition were highly resilient. It is concluded that pea-barley intercropping is a relevant cropping strategy to adopt when trying to optimize N-2-fixation inputs to the cropping system. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grain legumes are known to increase the soil mineral nitrogen (N) content, reduce the infection pressure of soil borne pathogens, and hence enhance subsequent cereals yields. Replicated field experiments were performed throughout W. Europe (Denmark, United Kingdom, France, Germany and Italy) to asses the effect of intercropping pea and barley on the N supply to subsequent wheat in organic cropping systems. Pea and barley were grown either as sole crops at the recommended plant density (P100 and B100, respectively) or in replacement (P50B50) or additive (P100B50) intercropping designs. In the replacement design the total relative plant density is kept constant, while the additive design uses the optimal sole crop density for pea supplementing with 'extra' barley plants. The pea and barley crops were followed by winter wheat with and without N application. Additional experiments in Denmark and the United Kingdom included subsequent spring wheat with grass-clover as catch crops. The experiment was repeated over the three cropping seasons of 2003, 2004 and 2005. Irrespective of sites and intercrop design pea-barley intercropping improved the plant resource utilization (water, light, nutrients) to grain N yield with 25-30% using the Land Equivalent ratio. In terms of absolute quantities, sole cropped pea accumulated more N in the grains as compared to the additive design followed by the replacement design and then sole cropped barley. The post harvest soil mineral N content was unaffected by the preceding crops. Under the following winter wheat, the lowest mineral N content was generally found in early spring. Variation in soil mineral N content under the winter wheat between sites and seasons indicated a greater influence of regional climatic conditions and long-term cropping history than annual preceding crop and residue quality. Just as with the soil mineral N, the subsequent crop response to preceding crop was negligible. Soil N balances showed general negative values in the 2-year period, indicating depletion of N independent of preceding crop and cropping strategy. It is recommended to develop more rotational approaches to determine subsequent crop effects in organic cropping systems, since preceding crop effects, especially when including legumes, can occur over several years of cropping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modeling Study was carried out into pea-barley intercropping in northern Europe. The two objectives were (a) to compare pea-barley intercropping to sole cropping in terms of grain and nitrogen yield amounts and stability, and (b) to explore options for managing pea-barley intercropping systems in order to maximize the biomass produced and the grain and nitrogen yields according to the available resources, such as light, water and nitrogen. The study consisted of simulations taking into account soil and weather variability among three sites located in northern European Countries (Denmark, United Kingdom and France), and using 10 years of weather records. A preliminary stage evaluated the STICS intercrop model's ability to predict grain and nitrogen yields of the two species, using a 2-year dataset from trials conducted at the three sites. The work was carried out in two phases, (a) the model was run to investigate the potentialities of intercrops as compared to sole crops, and (b) the model was run to explore options for managing pea-barley intercropping, asking the following three questions: (i) in order to increase light capture, Would it be worth delaying the sowing dates of one species? (ii) How to manage sowing density and seed proportion of each species in the intercrop to improve total grain yield and N use efficiency? (iii) How to optimize the use of nitrogen resources by choosing the most suitable preceding crop and/or the most appropriate soil? It was found that (1) intercropping made better use of environmental resources as regards yield amount and stability than sole cropping, with a noticeable site effect, (2) pea growth in intercrops was strongly linked to soil moisture, and barley yield was determined by nitrogen uptake and light interception due to its height relative to pea, (3) sowing barley before pea led to a relative grain yield reduction averaged over all three sites, but sowing strategy must be adapted to the location, being dependent on temperature and thus latitude, (4) density and species proportions had a small effect on total grain yield, underlining the interspecific offset in the use of environmental growth resources which led to similar total grain yields whatever the pea-barley design, and (5) long-term strategies including mineralization management through organic residue supply and rotation management were very valuable, always favoring intercrop total grain yield and N accumulation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. Molecular & Cellular Proteomics 8: 2368-2381, 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf blotch, caused by Rhynchosporium secalis, was studied in a range of winter barley cultivars using a combination of traditional plant pathological techniques and newly developed multiplex and real-time polymerase chain reaction (PCR) assays. Using PCR, symptomless leaf blotch colonization was shown to occur throughout the growing season in the resistant winter barley cv. Leonie. The dynamics of colonization throughout the growing season were similar in both Leonie and Vertige, a susceptible cultivar. However, pathogen DNA levels were approximately 10-fold higher in the susceptible cultivar, which expressed symptoms throughout the growing season. Visual assessments and PCR also were used to determine levels of R. secalis colonization and infection in samples from a field experiment used to test a range of winter barley cultivars with different levels of leaf blotch resistance. The correlation between the PCR and visual assessment data was better at higher infection levels (R(2) = 0.81 for leaf samples with >0.3% disease). Although resistance ratings did not correlate well with levels of disease for all cultivars tested, low levels of infection were observed in the cultivar with the highest resistance rating and high levels of infection in the cultivar with the lowest resistance rating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The grass species Miscanthus sinensis, Echinochloa crus-galli and Phalaris arundinacea may be useful biomass crops. In glasshouse inoculations with two isolates of Barley yellow dwarf virus (BYDV)-MAV and BYDV-PAV and one of Cereal yellow dwarf virus (CYVD)-RPV , E. crus galli was infected by all three virus isolates, P. arundinacea by BYDV-MAV and CYDV-RPV, but M. sinensis only by BYDV-MAV. All three hosts became very difficult to infect after several weeks’ growth. Symptoms were inconspicuous; dry matter yield losses ranged from c. 20–40%. Aphids acquired all three virus isolates from E. crus-galli, but more efficiently from 5 than 26-week-old plants. Only BYDV-MAV was acquired from P. arundinacea and M. sinensis. Plants of each species and of Avena sativa were grown outdoors between May and July in 1994 and 1995. Young plants of each species were exposed for successive 2-week intervals during the same periods. Vector populations were higher on A. sativa and P. arundinacea than on E. crus-galli and M. sinensis, and more plants of these species became infected. In 1994 only BYDV-MAV was detected. In 1995 BYDV-MAV, BYDV-PAV and CYDV-RPV were all detected; BYDV-MAV was again the virus isolate most frequently found.