667 resultados para Barley


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chungui Lu, Olga A. Koroleva, John F. Farrar, Joe Gallagher, Chris J. Pollock, and A. Deri Tomos (2002). Rubisco small subunit, chlorophyll a/b-binding protein and sucrose : fructan-6-fructosyl transferase gene expression and sugar status in single barley leaf cells in situ. Cell type specificity and induction by light. Plant Physiology, 130 (3) pp.1335-1348 Sponsorship: BBSRC RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative resistance of 15 winter barley, three winter wheat and three winter oat cultivars on the UK recommended list 2003 and two spring wheat cultivars on the Irish 2003 recommended list were evaluated using Microdochium nivale in detached leaf assays to further understand components of partial disease resistance (PDR) and Fusarium head blight (FHB) resistance across cereal species. Barley cultivars showed incubation periods comparable to, and latent periods longer than the most FHB resistant Irish and UK wheat cultivars evaluated. In addition, lesions on barley differed from those on wheat as they were not visibly chlorotic when placed over a light box until sporulation occurred, in contrast to wheat cultivars where chlorosis of the infected area occurred when lesions first developed. The pattern of delayed chlorosis of the infected leaf tissue and longer latent periods indicate that resistances are expressed in barley after the incubation period is observed, and that these temporarily arrest the development of mycelium and sporulation. Incubation periods were longer for oats compared to barley or wheat cultivars. However, oat cultivars differed from both wheat and barley in that mycelial growth was observed before obvious tissue damage was detected under macroscopic examination, indicating tolerance of infection rather than inhibition of pathogen development, and morphology of sporodochia differed, appearing less well developed and being much less abundant. Longer latent periods have previously been related to greater FHB resistance in wheat. The present results suggest the longer latent periods of barley and oat cultivars, than wheat, are likely to play a role in overall FHB resistance if under the same genetic control as PDR components expressed in the head. However the limited range of incubation and latent periods observed within barley and oat cultivars evaluated was in contrast with wheat where incubation and latent periods were shorter and more variable among genotypes. The significance of the various combinations of PDR components detected in the detached leaf assay as components of FHB resistance in each crop requires further investigation, particularly with regard to the apparent tolerance of infection in oats and necrosis in barley, after the incubation period is observed, associated with retardation of mycelial growth and sporulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty-eight mapped barley SSRs were used to examine changes in the level and pattern of variability in northern European spring barley over time. Comparing the most recently introduced cultivars with a group of 19 landraces and key progenitors termed 'foundation genotypes' we observed a reduction in the spectrum of alleles at 28 loci over time, and highlighted chromosomal regions with limited SSR allelic variation. The 19 'foundation genotypes' contained 72% of the alleles present in all the cultivars sampled. The smallest number of genotypes required to encompass all of the alleles detected in this study was 44, several of which were recently introduced cultivars. The level of diversity within modern cultivars was lower (0.484) than in the 'foundation genotypes' (0.597), although the values varied with the SSR locus. A total of 74 rare alleles (frequency

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paired grain, shoot, and soil of 173 individual sample sets of commercially farmed temperate rice, wheat, and barley were surveyed to investigate variation in the assimilation and translocation of arsenic (As). Rice samples were obtained from the Carmargue (France), Doñana (Spain), Cadiz (Spain), California, and Arkansas. Wheat and barleywere collected from Cornwall and Devon (England) and the east coast of Scotland. Transfer of As from soil to grain was an order of magnitude greater in rice than for wheat and barley, despite lower rates of shoot-to-grain transfer. Rice grain As levels over 0.60 microg g(-1) d. wt were found in rice grown in paddy soil of around only 10 microg g(-1) As, showing that As in paddy soils is problematic with respect to grain As levels. This is due to the high shoot/soil ratio of approximately 0.8 for rice compared to 0.2 and 0.1 for barley and wheat, respectively. The differences in these transfer ratios are probably due to differences in As speciation and dynamics in anaerobic rice soils compared to aerobic soils for barley and wheat. In rice, the export of As from the shoot to the grain appears to be under tight physiological control as the grain/shoot ratio decreases by more than an order of magnitude (from approximately 0.3 to 0.003 mg/kg) and as As levels in the shoots increase from 1 to 20 mg/kg. A down regulation of shoot-to-grain export may occur in wheat and barley, but it was not detected at the shoot As levels found in this survey. Some agricultural soils in southwestern England had levels in excess of 200 microg g(-1) d. wt, although the grain levels for wheat and barley never breached 0.55 microg g(-1) d. wt. These grain levels were achieved in rice in soils with an order of magnitude lower As. Thus the risk posed by As in the human food-chain needs to be considered in the context of anaerobic verses aerobic ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic variation existing in a set of barley (Hordeum vulgare L.) landrace samples recently collected in Morocco was estimated. Two kinds of genetic markers, seed storage proteins (hordeins) and random amplified polymorphic DNA (RAPD), were used. Only six out of 31 landraces were subjected to RAPD analysis. Both kinds of markers, RAPD and storage proteins, yielded similar results, showing that the level of variation observed in Moroccan barley was high: all landraces showed variability; 808 different storage protein patterns (multilocus associations) were observed among 1897 individuals (2.32 seeds per association, on average) with an average of 43 multilocus associations per accession. In general, genetic variation within accessions was higher than between accessions. The 100 polymorphic RAPD bands generated by 21 effective primers were able to generate enough patterns to differentiate between uniform cultivars and even between individuals in variable accessions. One of the aims of this work was to compare the effectiveness of RAPD versus storage protein techniques in assessing the variability of genetic resource collections. On average hordeins were more polymorphic than RAPDs: they showed more alternatives per band on gels and a higher percentage of polymorphic bands, although RAPDs supply a higher number of bands. Although RAPD is an easy and standard technique, storage protein analysis is technically easier, cheaper and needs less sophisticated equipment. Thus, when resources are a limiting factor and considering the cost of consumables and work time, seed storage proteins must be the technique of choice for a first estimation of genetic variation in plant genetic resource collections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With biochar becoming an emerging soil amendment and a tool to mitigate climate change, there are only a few studies documenting its effects on trace element cycling in agriculture. Zn and Cu are deficient in many human diets, whilst exposures to As, Pb and Cd need to be decreased. Biochar has been shown to affect many of them mainly at a bench or greenhouse scale, but field research is not available. In our experiment we studied the impact of biochar, as well as its interactions with organic (compost and sewage sludge) and mineral fertilisers (NPK and nitrosulfate), on trace element mobility in a Mediterranean agricultural field (east of Madrid, Spain) cropped with barley. At harvesting time, we analysed the soluble fraction, the available fraction (assessed with the diffusive gradients in thin gels technique, DGT) and the concentration of trace elements in barley grain. No treatment was able to significantly increase Zn, Cu or Ni concentration in barley grain, limiting the application for cereal fortification. Biochar helped to reduce Cd and Pb in grain, whereas As concentration slightly increased. Overall biochar amendments demonstrated a potential to decrease Cd uptake in cereals, a substantial pathway of exposure in the Spanish population, whereas mineral fertilisation and sewage sludge increased grain Cd and Pb. In the soil, biochar helped to stabilise Pb and Cd, while marginally increasing As release/mobilisation. Some of the fertilisation practises or treatments increased toxic metals and As solubility in soil, but never to an extent high enough to be considered an environmental risk. Future research may try to fortify Zn, Cu and Ni using other combinations of organic amendments and different parent biomass to produce enriched biochars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Doctor en Ciencias con Orientación en Procesos Sustentables) UANL, 2013.