985 resultados para Bacterial Detection
Resumo:
Rapid and specific detection of foodborne bacteria that can cause food spoilage or illness associated to its consumption is an increasingly important task in food industry. Bacterial detection, identification, and classification are generally performed using traditional methods based on biochemical or serological tests and the molecular methods based on DNA or RNA fingerprints. However, these methodologies are expensive, time consuming and laborious. Infrared spectroscopy is a reliable, rapid, and economic technique which could be explored as a tool for bacterial analysis in the food industry. In this thesis it was evaluated the potential of IR spectroscopy to study the bacterial quality of foods. In Chapter 2, it was developed a calibration model that successfully allowed to predict the bacterial concentration of naturally contaminated cooked ham samples kept at refrigeration temperature during 8 days. In this part, it was developed the methodology that allowed the best reproducibility of spectra from bacteria colonies with minimal sample preparation, which was used in the subsequent work. Several attempts trying different resolutions and number of scans in the IR were made. A spectral resolution of 4 cm-1, with 32 scans were the settings that allowed the best results. Subsequently, in Chapter 3, it was made an attempt to identify 22 different foodborne bacterial genera/species using IR spectroscopy coupled with multivariate analysis. The principal component analysis, used as an exploratory technique, allowed to form distinct groups, each one corresponding to a different genus, in most of the cases. Then, a hierarchical cluster analysis was performed to further analyse the group formation and the possibility of distinction between species of the same bacterial genus. It was observed that IR spectroscopy not only is suitable to the distinction of the different genera, but also to differentiate species of the same genus, with the simultaneous use of principal component analysis and cluster analysis techniques. The utilization of IR spectroscopy and multivariate statistical analysis were also investigated in Chapter 4, in order to confirm the presence of Listeria monocytogenes and Salmonella spp. isolated from contaminated foods, after growth in selective medium. This would allow to substitute the traditional biochemical and serological methods that are used to confirm these pathogens and that delay the obtainment of the results up to 2 days. The obtained results allowed the distinction of 3 different Listeria species and the distinction of Salmonella spp. from other bacteria that can be mistaken with them. Finally, in chapter 5, high pressure processing, an emerging methodology that permits to produce microbiologically safe foods and extend their shelf-life, was applied to 12 foodborne bacteria to determine their resistance and the effects of pressure in cells. A treatment of 300 MPa, during 15 minutes at room temperature was applied. Gram-negative bacteria were inactivated to undetectable levels and Gram-positive showed different resistances. Bacillus cereus and Staphylococcus aureus decreased only 2 logs and Listeria innocua decreased about 5 logs. IR spectroscopy was performed in bacterial colonies before and after HPP in order to investigate the alterations of the cellular compounds. It was found that high pressure alters bands assigned to some cellular components as proteins, lipids, oligopolysaccharides, phosphate groups from the cell wall and nucleic acids, suggesting disruption of the cell envelopes. In this work, bacterial quantification and classification, as well as assessment of cellular compounds modification with high pressure processing were successfully performed. Taking this into account, it was showed that IR spectroscopy is a very promising technique to analyse bacteria in a simple and inexpensive manner.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Infected airway epithelial cells up-regulate the expression of chemokines, chiefly IL-8, and antimicrobial molecules including ß-defensins (BD). Acinetobacter baumannii is a cause of hospital-acquired pneumonia. We examined whether A. baumannii induced the expressions of IL-8 and BD2 by airway epithelial cells and the receptors implicated in bacterial detection. A549 and human primary airway cells released IL-8 upon infection. A. baumannii-infected cells also increased the expression of BD2 which killed A. baummannii strains. IL-8 induction was via NF-B and mitogen-activated kinases p38 and p44/42-dependent pathways. A. baumannii engaged Toll-like receptor (TLR) 2 and TLR4 pathways and A549 cells could use soluble CD14 as TLRs co-receptor. A. baumannii lipopolysaccharide stimulated IL-8 release by A549 cells and sCD14 facilitated the recognition of the lipopolysaccharide. Mass spectrometry analysis revealed that A. baumannii lipid A structure matches those with endotoxic potential. These results demonstrate that airway epithelial cells produce mediators important for A. baumannii clearance. © 2010 March et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: A recent in vivo study has shown considerable contamination of internal implant and suprastructure components with great biodiversity, indicating bacterial leakage along the implant-abutment interface, abutment-prosthesis interface, and restorative margins. The goal of the present study was to compare microbiologically the peri-implant sulcus to these internal components on implants with no clinical signs of peri-implantitis and in function for many years. Checkerboard DNA-DNA hybridization was used to identify and quantify 40 species. Material and Methods: Fifty-eight turned titanium Brånemark implants in eight systemically healthy patients (seven women, one man) under regular supportive care were examined. All implants had been placed in the maxilla and loaded with a screw-retained full-arch bridge for an average of 9.6 years. Gingival fluid samples were collected from the deepest sulcus per implant for microbiological analysis. As all fixed restorations were removed, the cotton pellet enclosed in the intra-coronal compartment and the abutment screw were retrieved and microbiologically evaluated. Results: The pellet enclosed in the suprastructure was very similar to the peri-implant sulcus in terms of bacterial detection frequencies and levels for practically all the species included in the panel. Yet, there was virtually no microbial link between these compartments. When comparing the abutment screw to the peri-implant sulcus, the majority of the species were less frequently found, and in lower numbers at the former. However, a relevant link in counts for a lot of bacteria was described between these compartments. Even though all implants in the present study showed no clinical signs of peri-implantitis, the high prevalence of numerous species associated with pathology was striking. Conclusions: Intra-coronal compartments of screw-retained fixed restorations were heavily contaminated. The restorative margin may have been the principal pathway for bacterial leakage. Contamination of abutment screws most likely occurred from the peri-implant sulcus via the implant-abutment interface and abutment-prosthesis interface.
Resumo:
Microarrays have established as instrumental for bacterial detection, identification, and genotyping as well as for transcriptomic studies. For gene expression analyses using limited numbers of bacteria (derived from in vivo or ex vivo origin, for example), RNA amplification is often required prior to labeling and hybridization onto microarrays. Evaluation of the fidelity of the amplification methods is crucial for the robustness and reproducibility of microarray results. We report here the first utilization of random primers and the highly processive Phi29 phage polymerase to amplify material for transcription profiling analyses. We compared two commercial amplification methods (GenomiPhi and MessageAmp kits) with direct reverse-transcription as the reference method, focusing on the robustness of mRNA quantification using either microarrays or quantitative RT-PCR. Both amplification methods using either poly-A tailing followed by in vitro transcription, or direct strand displacement polymerase, showed appreciable linearity. Strand displacement technique was particularly affordable compared to in vitro transcription-based (IVT) amplification methods and consisted in a single tube reaction leading to high amplification yields. Real-time measurements using low-, medium-, and highly expressed genes revealed that this simple method provided linear amplification with equivalent results in terms of relative messenger abundance as those obtained by conventional direct reverse-transcription.
Resumo:
Background: The fact that Tannerella forsythia, an important periopathogen, is difficult to cultivate from mixed infections has impeded precise estimates of its distribution within a given population. In order to discern T. forsythia alone from the mixed infection of plaque, the use of sensitive 16S ribosomal RNA based polymerase chain reaction (PCR) detection is necessary. Objectives: The aim of the present study was to determine the distribution of T. forsythia in an adult and in an adolescent population. Materials and methods: Subgingival plaque samples were obtained from 498 Australian adults and from 228 adolescent subjects from Manchester, UK. Tannerella forsythia was detected using PCR and confirmed by restriction analysis. Semi-quantitation of the organisms was carried out using two specific primers of differing sensitivities. Results: In the adolescent population, 25% were found to carry T. forsythia, albeit in relatively low numbers. In the adult population, a total of 37.8% and 11% were found to carry the organism with primer 2 and primer 1, respectively, suggesting that around 27% had between 10(3) and 10(7) organisms. Although there was an apparent increased proportion of T. forsythia positive subjects in those aged >= 50 years, this was not statistical significant. However, T. forsythia positive male smokers showed increased disease severity compared with T. forsythia negative subjects. Conclusion: This study has shown that at least 25% of the adolescent population carry low numbers of T. forsythia, whereas at least 37% of adults carry the organism, with some 11% having relatively high numbers. The relationship between T. forsythia and disease progression in these populations, however, remains to be determined.
Resumo:
Introduction: Infiltration of organic fluids and microorganisms at the abutment/implant interface may result in bacterial infection of peri-implant tissues. Internal colonization of periodontal pathogens may be caused by bacteria trapped during installation or penetration of abutment/implant leakage. The aim of this study was to detect periodontal pathogens in the internal area of dental implants before loading. Materials and Methods: Seventy-eight implants in 32 partially edentulous subjects were selected for this evaluation. A bacterial biofilm sample of the internal surface of each implant was taken and analyzed for the presence of 40 microorganisms by checkerboard DNA-DNA hybridization, prior to installation of healing or any other prosthetic abutment. Discussion: Bacteria were detected in 20 patients (62.5%), distributed in 41 implants (52.6%). Forty-seven percent of implants showed no bacterial detection. Spontaneous early implant exposure to oral cavity during the healing period was not significant (P >0.05) to increase bacterial prevalence, but implants placed at mandible had higher bacterial prevalence than maxillary ones. Conclusion: The internal surface of dental implants can serve as a reservoir of periodontal pathogens for future implant/abutment interface.
Resumo:
Background:Bacterial non-coding small RNAs (sRNAs) have attracted considerable attention due to their ubiquitous nature and contribution to numerous cellular processes including survival, adaptation and pathogenesis. Existing computational approaches for identifying bacterial sRNAs demonstrate varying levels of success and there remains considerable room for improvement. Methodology/Principal Findings: Here we have proposed a transcriptional signal-based computational method to identify intergenic sRNA transcriptional units (TUs) in completely sequenced bacterial genomes. Our sRNAscanner tool uses position weight matrices derived from experimentally defined E. coli K-12 MG1655 sRNA promoter and rho-independent terminator signals to identify intergenic sRNA TUs through sliding window based genome scans. Analysis of genomes representative of twelve species suggested that sRNAscanner demonstrated equivalent sensitivity to sRNAPredict2, the best performing bioinformatics tool available presently. However, each algorithm yielded substantial numbers of known and uncharacterized hits that were unique to one or the other tool only. sRNAscanner identified 118 novel putative intergenic sRNA genes in Salmonella enterica Typhimurium LT2, none of which were flagged by sRNAPredict2. Candidate sRNA locations were compared with available deep sequencing libraries derived from Hfq-co-immunoprecipitated RNA purified from a second Typhimurium strain (Sittka et al. (2008) PLoS Genetics 4: e1000163). Sixteen potential novel sRNAs computationally predicted and detected in deep sequencing libraries were selected for experimental validation by Northern analysis using total RNA isolated from bacteria grown under eleven different growth conditions. RNA bands of expected sizes were detected in Northern blots for six of the examined candidates. Furthermore, the 5'-ends of these six Northern-supported sRNA candidates were successfully mapped using 5'-RACE analysis. Conclusions/Significance: We have developed, computationally examined and experimentally validated the sRNAscanner algorithm. Data derived from this study has successfully identified six novel S. Typhimurium sRNA genes. In addition, the computational specificity analysis we have undertaken suggests that similar to 40% of sRNAscanner hits with high cumulative sum of scores represent genuine, undiscovered sRNA genes. Collectively, these data strongly support the utility of sRNAscanner and offer a glimpse of its potential to reveal large numbers of sRNA genes that have to date defied identification. sRNAscanner is available from: http://bicmku.in:8081/sRNAscanner or http://cluster.physics.iisc.ernet.in/sRNAscanner/.
Resumo:
Nitrogen-fixing bacterial isolate from the intercellular spaces of tomato root cortical cells was studied for the location of nif genes on the chromosomal or plasmid DNA. The bacterial isolate showed two plasmids of approximate molecular sizes of 220 and 120 kb. Klebsiella pneumoniae nif HDK probe hybridized with the chromosomal DNA and not with the plasmid DNA thereby showing that nif genes are localised on the chromosomal DNA.
Resumo:
Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks.
Resumo:
Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks. © 2011 Elsevier B.V.