225 resultados para BRUCEI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human African trypanosomiasis is prevalent in Sub-sahara African countries that lie between 14° North and 29° south of the equator. Sixty million people are at risk of infection. Trypanosoma brucei gambesience occurs in West and Central Africa while Trypanosoma brucei rhodesience occurs in East and Southern Africa. The neurological stage of the disease is characterized by neuroinflammation. About 10% of patients treated with the recommended drug, melarsoprol develop post treatment reactive encephalopathy, which is fatal in 50% of these patients, thus melarsoprol is fatal in 5% of all treated patients. This study was aimed at establishing the potential activity of Erythrina abyssinica in reducing neuroinflammation following infection with Trypanosoma brucei brucei. Swiss white mice were divided into ten groups, two control groups and eight infected groups. Infected mice received either methanol or water extract of Erythrina abyssinica at 12.5, 25, 50 or 100 mg/kg body weight. Parasite counts were monitored in peripheral circulation from the third day post infection up to the end of the study. Brains were processed for histology, immunohistochemistry scanning and transmission electron microscopy. Following infection, trypanosomes were observed in circulation 3 days post-infection, with the parasitaemia occurring in waves. In the cerebrum, typical brain pathology of chronic trypanosomiasis was reproduced. This was exhibited as astrocytosis, perivascular cuffing and infiltration of inflammatory cells into the neuropil. However, mice treated with Erythrina abyssinica water extract exhibited significant reduction in perivascular cuffing, lymphocytic infiltration and astrocytosis in the cerebrum. The methanol extract did not have a significant difference compared to the non-treated group. This study provides evidence of anti-inflammatory properties of Erythrina abyssinica and may support its wide use as a medicinal plant by various communities in Kenya.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetoplastids are defined by the unique organization of their mitochondrial DNA (kDNA). It forms a highly concatenated DNA network that is linked to the basal body of the flagellum by the tripartite attachment complex (TAC). The TAC encompasses intra and extramitochondrial filaments and a highly differentiated region of the two mitochondrial membranes. Here we identify and characterize a mitochondrial outer membrane protein of Trypanosoma brucei that is predominantly localized in the TAC. The protein is essential for growth in both life cycle stages. Immunofluorescence shows that ablation of the protein does not affect kDNA replication but abolishes the segregation of the replicated kDNA network causing rapid loss of kDNA. Besides its role in kDNA maintenance in vivo and in vitro experiments show that the protein is involved in mitochondrial protein import and that it interacts with a recently discovered protein import factor. RNAi experiments in a T. brucei cell line in which the kDNA is dispensable suggest that the essential function is linked to kDNA maintenance. Bioinformatic analysis shows that the studied outer membrane protein has beta-barrel topology and that it belongs to the mitochondrial porin family comprising VDAC, Tom40 and Mdm10. Interestingly, Mdm10 has sofar only been found in yeast. Ist function in protein import and mitochondrial DNA maintenance suggests that the protein in our study is the functional homologue of Mdm10. Thus, the TAC – a defining structure of Kinetoplastids – contains a conserved protein which in yeast and trypanosomes performs the same function. Our study therefore provides an example that trypanosomal biology, rather than being unique, often simply represents a more extreme manifestation of a conserved biological concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

African trypanosomes, the causative agent of Human African Trypanosomiasis (HAT) are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. The mitochondrial outer membrane (MOM) of T. brucei is essentially unchartered territory. The beta barrel membrane proteins VDAC, Sam50 and archaic TOM are the only MOM proteins that have been characterized so far. Using biochemical fractionation and correlated protein abundance-profiling we were able to raise the protein inventory of the MOM. Of the 82 candidate proteins two-thirds have never been associated with mitochondria before. The function of 42 proteins remains unknown. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three MOM candidate proteins of unknown function resulted in a collapse of the network-like mitochondrion of insect-stage parasites and therefore directly or indirectly are involved in the regulation of mitochondrial morphology in T. brucei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitochondrial outer membrane (MOM) separates the mitochondria from the cytoplasm, serving both as a barrier and as a gateway. Protein complexes — believed to be universally conserved in all eukaryotes — reside in the MOM to orchestrate and control metabolite exchange, lipid metabolism and uptake of biopolymers such as protein and RNA. African trypanosomes are the causative agent of the sleeping sickness in humans. The parasites are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. Trypanosomes have unique mitochondrial biology that concerns their mitochondrial metabolism and their unusual mitochondrial morphology that differs to great extent between life stages. Another striking feature is the organization of the mitochondrial genome that does not encode any tRNA genes, thus all tRNAs needed for mitochondrial translation have to be imported. However, the MOM of T. brucei is essentially unchartered territory. It lacks a canonical protein import machinery and facilitation of tRNA translocation remains completely elusive. Using biochemical fractionation and label-free quantitative mass spectrometry for correlated protein abundance-profiling we were able to identify a cluster of 82 candidate proteins that can be localized to the trypanosomal MOM with high confidence. This enabled us to identify a highly unusual, potentially archaic protein import machinery that might also transport tRNAs. Moreover, two-thirds of the identified polypeptides present on the MOM have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the MOM of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of insect-stage parasites and therefore directly or indirectly are involved in the regulation of mitochondrial morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitochondrial outer membrane (MOM) separates the mitochondria from the cytoplasm, serving both as a barrier and as a gateway. Protein complexes residing in the MOM orchestrate protein and tRNA import, metabolite exchange and lipid metabolism. African trypanosomes are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. The MOM of T. brucei is essentially unchartered territory. It lacks a canonical TOM-complex and proteins are imported across the MOM using ATOM, which is related to both Tom40 and to the bacterial Omp85-protein family. The beta barrel membrane proteins ATOM, VDAC and Sam50 are the only MOM proteins that have been characterized in T. brucei so far. Using biochemical fractionation and correlated protein abundance-profiling we were able to identify a cluster of 82 candidate proteins that can be localized to the trypanosomal MOM with high confidence Two-thirds of these polypeptides have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the MOM of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of procyclic cells and therefore directly or indirectly are involved in the regulation of mitochondrial morphology in T. brucei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetoplastids are defined by the unique organization of their mitochondrial DNA (kDNA). It forms a highly concatenated DNA network that is linked to the basal body of the flagellum by the tripartite attachment complex (TAC). The TAC encompasses intra and extramitochondrial filaments and a highly differentiated region of the two mitochondrial membranes. Here we identify and characterize a mitochondrial outer membrane protein of Trypanosoma brucei that is predominantly localized in the TAC. The protein is essential for growth in both life cycle stages. Immunofluorescence shows that ablation of the protein does not affect kDNA replication but abolishes the segregation of the replicated kDNA network causing rapid loss of kDNA. Besides its role in kDNA maintenance in vivo and in vitro experiments show that the protein is involved in mitochondrial protein import and that it interacts with a recently discovered protein import factor. RNAi experiments in a T. brucei cell line in which the kDNA is dispensable suggest that the essential function is linked to kDNA maintenance. Bioinformatic analysis shows that the studied outer membrane protein has beta-barrel topology and that it belongs to the mitochondrial porin family comprising VDAC, Tom40 and Mdm10. Interestingly, Mdm10 has so far only been found in yeast. Its function in protein import and mitochondrial DNA maintenance suggests that the protein in our study is the functional homologue of Mdm10. Thus, the TAC – a defining structure of Kinetoplastids – contains a conserved protein which in yeast and trypanosomes performs the same function. Our study therefore provides an example that trypanosomal biology, rather than being unique, often simply represents a more extreme manifestation of a conserved biological concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amino acid transporters are crucial for parasite survival since the cellular metabolism of parasitic protozoa depends on the uptake of exogenous amino acids. Amino acid transporters are also of high pharmacological relevance because they may mediate uptake of toxic amino acid analogues. In the present study we show that the eflornithine transporter AAT6 from Trypanosoma brucei (TbAAT6) mediates growth on neutral amino acids when expressed in Saccharomyces cerevisiae mutants. The transport was electrogenic and further analysed in Xenopus laevis oocytes. Neutral amino acids, proline analogues, eflornithine and acivicin induced inward currents. For proline, glycine and tryptophan the apparent affinities and maximal transport rates increased with more negative membrane potentials. Proline-induced currents were dependent on pH, but not on sodium. Although proline represents the primary energy source of T. brucei in the tsetse fly, down-regulation of TbAAT6-expression by RNAi showed that in culture TbAAT6 is not essential for growth of procyclic form trypanosomes in the presence of glucose or proline as energy source. TbAAT6-RNAi lines of both bloodstream and procyclic form trypanosomes showed reduced susceptibility to eflornithine, whereas the sensitivity to acivicin remained unchanged, indicating that acivicin enters the cell by more than one transporter

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Choline is an essential nutrient for eukaryotic cells, where it is used as precursor for the synthesis of choline-­containing phospholipids, such as phosphatidylcholine (PC). Our experiments showed – for the first time – that Trypanosoma brucei, the causative agent of human African sleeping sickness, is able to take up choline from the culture medium to use for PC synthesis, indicating that trypanosomes express a transporter for choline at the plasma membrane. Further characterization in procyclic and bloodstream forms revealed that choline uptake is saturable and can be inhibited by HC-3, a known inhibitor of choline uptake in mammalian cells. To obtain additional insights on choline uptake and metabolism, we investigated the effects of choline-analogs that were previously shown to be toxic for T. brucei parasites in culture. Interestingly, we found that all analogs tested effectively inhibited choline uptake into both bloodstream and procyclic form parasites. Subsequently, selected compounds were used to search for possible candidate genes encoding choline transporters in T. brucei, using an RNAi library in bloodstream forms. We identified a protein belonging to the mitochondrial carrier family, previously annotated as TbMCP14, as prime candidate. Down‐regulation of TbMCP14 by RNAi prevented drug-­induced loss of mitochondrial membrane potential and conferred 8­‐fold resistance of T. brucei bloodstream forms to choline analogs. Conversely, over‐expression of the carrier increased parasite susceptibility more than 13-­fold. However, subsequent experiments demonstrated that TbMCP14 was not involved in metabolism of choline. Instead, growth curves in glucose‐depleted medium using RNAi or knock‐out parasites suggested that TbMCP14 is involved in metabolism of amino acids for energy production. Together, our data demonstrate that the identified member of the mitochondrial carrier family is involved in drug uptake into the mitochondrion and has a vital function in energy production in T. brucei.