994 resultados para BOX-PCR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O gênero Brucella é formado por coco-bacilos Gram negativos patogênicos ao homem e animais, sendo classificado como patógeno de grupo de risco III. A identificação dessas bactérias apresenta várias limitações como: exigência de inoculação em vários meios, tempo de incubação longo e necessidade de soros imunes e bacteriófagos. Devido à sua alta patogenicidade e ao longo tempo de exposição dos laboratoristas à bactéria, a brucelose é uma das infecções mais freqüentemente adquiridas em laboratório. Além da contaminação em laboratório, a transmissão ao homem pode ocorrer através de animais infectados e ingestão de produtos derivados, como o leite cru. A procura de métodos rápidos de identificação das espécies e biovares pode ser útil para diminuir os riscos do manuseio desta bactéria e na tomada de medidas de controle epidemiológico. O principal objetivo deste trabalho foi facilitar a classificação de cepas de referência de Brucella spp. e isoladas no Brasil utilizando a técnica de rep-PCR com oligonucleotídeos do elemento BOX, uma seqüência repetida presente no genoma de várias bactérias. Foram analisados 38 isolados representando diferentes espécies e biovares de Brucella sp. e 13 isolados de gêneros relacionados como controle da especificidade da reação. Foi realizada uma confirmação prévia dos isolados de brucela por testes bioquímicos e PCR gênero-específica. A técnica de BOX-PCR agrupou todas as espécies e biovares de Brucella em um único grupo com nível de similaridade entre 100 e 74%. Diferenças entre os isolados, quanto a presença ou ausência de bandas, puderam ser observadas. Entretanto, essas divergências não caracterizam uma espécie ou biovar. Bandas comuns a todos os isolados de Brucella sp. podem caracterizar o gênero.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, the suitability of two repetitive-element-based PCR (rep-PCR) assays, enterobacterial repetitive intergenic consensus (ERIC)-PCR and BOX-PCR, to rapidly characterize Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis (CF) was examined. ERIC-PCR utilizes paired sequence-specific primers and BOX-PCR a single primer that target highly conserved repetitive elements in the P. aeruginosa genome. Using these rep-PCR assays, 163 P. aeruginosa isolates cultured from sputa collected from 50 patients attending an adult CF clinic and 50 children attending a paediatric CF clinic were typed. The results of the rep-PCR assays were compared to the results of PFGE. All three assays revealed the presence of six major clonal groups shared by multiple patients attending either of the CF clinics, with the dominant clonal group infecting 38% of all patients. This dominant clonal group was not related to the dominant clonal group detected in Sydney or Melbourne (pulsotype 1), nor was it related to the dominant groups detected in the UK. In all, PFGE and rep-PCR identified 58 distinct clonal groups, with only three of these shared between the two clinics. The results of this study showed that both ERIC-PCR and BOX-PCR are rapid, highly discriminatory and reproducible assays that proved to be powerful surveillance screening tools for the typing of clinical P. aeruginosa isolates recovered from patients with CF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genus Vibrioof the family Vibrionaceae are Gram negative, oxidasepositive, rod- or curved- rodshaped facultative anaerobes, widespread in marine and estuarine environments. Vibrio species are opportunistic human pathogens responsible for diarrhoeal disease, gastroenteritis, septicaemia and wound infections and are also pathogens of aquatic organisms, causing infections to crustaceans, bivalves and fishes. In the present study, marine environmental samples like seafood and water and sediment samples from aquafarms and mangroves were screened for the presence of Vibrio species. Of the134 isolates obtained from the various samples, 45 were segregated to the genus Vibrio on the basis of phenotypic characterization.like Gram staining, oxidase test, MoF test and salinity tolerance. Partial 16S rDNA sequence analysis was utilized for species level identification of the isolates and the strains were identified as V. cholerae(N=21), V. vulnificus(N=18), V. parahaemolyticus(N=3), V. alginolyticus (N=2) and V. azureus (N=1). The genetic relatedness and variations among the 45 Vibrio isolates were elucidated based on 16S rDNA sequences. Phenotypic characterization of the isolates was based on their response to 12 biochemical tests namely Voges-Proskauers’s (VP test), arginine dihydrolase , tolerance to 3% NaCl test, ONPG test that detects β-galactosidase activity, and tests for utilization of citrate, ornithine, mannitol, arabinose, sucrose, glucose, salicin and cellobiose. The isolates exhibited diverse biochemical patterns, some specific for the species and others indicative of their environmental source.Antibiogram for the isolates was determined subsequent to testing their susceptibility to 12 antibiotics by the disc diffusion method. Varying degrees of resistance to gentamycin (2.22%), ampicillin(62.22%), nalidixic acid (4.44%), vancomycin (86.66), cefixime (17.77%), rifampicin (20%), tetracycline (42.22%) and chloramphenicol (2.22%) was exhibited. All the isolates were susceptible to streptomycin, co-trimoxazole, trimethoprim and azithromycin. Isolates from all the three marine environments exhibited multiple antibiotic resistance, with high MAR index value. The molecular typing methods such as ERIC PCR and BOX PCR revealed intraspecies relatedness and genetic heterogeneity within the environmental isolatesof V. cholerae and V. vulnificus. The 21 strains of V. choleraewere serogroupedas non O1/ non O139 by screening for the presence O1rfb and O139 rfb marker genes by PCR. The virulence/virulence associated genes namely ctxA, ctxB, ace, VPI, hlyA, ompU, rtxA, toxR, zot, nagst, tcpA, nin and nanwere screened in V. cholerae and V. vulnificusstrains.The V. vulnificusstrains were also screened for three species specific genes viz., cps, vvhand viu. In V. cholerae strains, the virulence associated genes like VPI, hlyA, rtxA, ompU and toxR were confirmed by PCR. All the isolates, except for strain BTOS6, harbored at least one or a combination of the tested genes and V. choleraestrain BTPR5 isolated from prawn hosted the highest number of virulence associated genes. Among the V. vulnificusstrains, only 3 virulence genes, VPI, toxR and cps, were confirmed out of the 16 tested and only 7 of the isolates had these genes in one or more combinations. Strain BTPS6 from aquafarm and strain BTVE4 from mangrove samples yielded positive amplification for the three genes. The toxRgene from 9 strains of V. choleraeand 3 strains of V. vulnificus were cloned and sequenced for phylogenetic analysis based on nucleotide and the amino acid sequences. Multiple sequence alignment of the nucleotide sequences and amino acid sequences of the environmental strains of V. choleraerevealed that the toxRgene in the environmental strains are 100% homologous to themselves and to the V. choleraetoxR gene sequence available in the Genbank database. The 3 strains of V. vulnificus displayed high nucleotide and amino acid sequence similarity among themselves and to the sequences of V. cholerae and V. harveyi obtained from the GenBank database, but exhibited only 72% homology to the sequences of its close relative V. vulnificus. Structure prediction of the ToxR protein of Vibrio cholerae strain BTMA5 was by PHYRE2 software. The deduced amino acid sequence showed maximum resemblance with the structure of DNA-binding domain of response regulator2 from Escherichia coli k-12 Template based homology modelling in PHYRE2 successfully modelled the predicted protein and its secondary structure based on protein data bank (PDB) template c3zq7A. The pathogenicity studies were performed using the nematode Caenorhabditiselegansas a model system. The assessment of pathogenicity of environmental strain of V. choleraewas conducted with E. coli strain OP50 as the food source in control plates, environmental V. cholerae strain BTOS6, negative for all tested virulence genes, to check for the suitability of Vibrio sp. as a food source for the nematode;V. cholerae Co 366 ElTor, a clinical pathogenic strain and V. cholerae strain BTPR5 from seafood (Prawn) and positive for the tested virulence genes like VPI, hlyA, ompU,rtxA and toxR. It was found that V. cholerae strain BTOS6 could serve as a food source in place of E. coli strain OP50 but behavioral aberrations like sluggish movement and lawn avoidance and morphological abnormalities like pharyngeal and intestinal distensions and bagging were exhibited by the worms fed on V. cholerae Co 366 ElTor strain and environmental BTPR5 indicating their pathogenicity to the nematode. Assessment of pathogenicity of the environmental strains of V. vulnificus was performed with V. vulnificus strain BTPS6 which tested positive for 3 virulence genes, namely, cps, toxRand VPI, and V. vulnificus strain BTMM7 that did not possess any of the tested virulence genes. A reduction was observed in the life span of worms fed on environmental strain of V. vulnificusBTMM7 rather than on the ordinary laboratory food source, E. coli OP50. Behavioral abnormalities like sluggish movement, lawn avoidance and bagging were also observed in the worms fed with strain BTPS6, but the pharynx and the intestine were intact. The presence of multi drug resistant environmental Vibrio strainsthat constitute a major reservoir of diverse virulence genes are to be dealt with caution as they play a decisive role in pathogenicity and horizontal gene transfer in the marine environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different molecular methods: BOX-PCR fingerprinting, R-FLP-PCR and sequencing of the 16S rDNA as well as the symbiotic genes nodC and nifH, were used to study the genetic diversity within a collection of nodulating bean rhizobia isolated from five soils of North-West Morocco. BOX fingerprints analysis of 241 isolates revealed 19 different BOX profiles. According to the PFLP-PCR and sequencing of 16S rDNA carried out on 45 representative isolates, 5 genotypes were obtained corresponding to the species Rhizobium etli, R. tropici, R. gallicum, R. leguminosarum and Sinorhizobium meliloti. The most abundant species were R. etli and R. tropici (61% and 24%, respectively). A high intraspecific diversity was observed among the R. etli isolates, while the R. tropici group was homogeneous. Most of the rhizobia studied belong to species known to nodulate common bean, while 2 species were unconventional microsymbionts: R. leguminosarum biovar viciae and S. meliloti. Our results, especially the nodulation promiscuity of common bean and the relation between the predominance of some species of rhizobia in particular soils and the salt content of these soils, indicate that there is a real need for a better understanding of the distribution of common bean rhizobia species in the soils of Morocco before any inoculation attempt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pyometra is recognized as one of the main causes of disease and death in the bitch, and Escherichia coli is the major pathogen associated with this disease. In this study, 70 E. coli isolates from the uteri horn, mouth, and rectum of bitches suffering from the disease and 43 E. coli isolates from the rectum of clinically healthy bitches were examined for the presence of uropathogenic virulence genes and susceptibility to antimicrobial drugs. DNA profiles of isolates from uteri horn and mouth in bitches with pyometra were compared by REP, ERIC, and BOX-PCR. Virulence gene frequencies detected in isolates from canine pyometra were as follows: 95.7% fim, 27.1% iss, 25.7% hly, 18.5% iuc, and 17.1% usp. Predominant resistance was determined for cephalothin, ampicillin, and nalidixic acid among the isolates from all sites examined. Multidrug resistance was found on ∼ 50% pyometra isolates. Using the genotypic methods some isolates from uteri, pus, and saliva of the same bitch proved to have identical DNA profiles which is a reason for concern due to the close relationship between household pets and humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To investigate the diversity and the catabolic capacity of oil-degrading Klebsiella strains isolated from hydrocarbon-contaminated sediments in Santos-Sao Vicente estuary systems in Brazil. Klebsiella strains obtained from the estuary were characterized using 16S rRNA gene sequencing and BOX-PCR patterns, testing their catabolic capacity to degrade toluene, xylene, naphthalene and nonane, and identifying the catabolic genes present in the oil-degrading strains. Results show that Klebsiella strains were widespread in the estuary. Twenty-one isolates from the Klebsiella genus were obtained; 14 had unique BOX patterns and were further investigated. Among four distinct catabolic genes tested (todC1, ndoB, xylE and alkB1), only the todC1 gene could be amplified in two Klebsiella strains. The biodegradation assay showed that most of the strains had the ability to degrade all of the tested hydrocarbons; however, the strains displayed different efficiencies. The oil-degrading Klebsiella isolates obtained from the estuary were closely related to Klebsiella pneumoniae and Klebsiella ornithinolytica. The isolates demonstrated a substantial degree of catabolic plasticity for hydrocarbon degradation. The results of this study show that several strains from the Klebsiella genus are able to degrade diverse hydrocarbon compounds. These findings indicate that Klebsiella spp. can be an important part of the oil-degrading microbial community in estuarine areas exposed to sewage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sugarcane is a culture of great importance for the Brazilian agriculture. Every year this culture consumes great amounts of nitrogen and phosphate fertilizers. However, the use of plant growth-promoting bacteria can reduce the use of the chemical fertilizers, contributing to the economy and the environment conservation. So, the goal of this study was to select sugarcane-associated diazotrophic bacteria able to solubilize inorganic phosphate and to evaluate the genetic diversity of these bacteria. A total of 68 diazotrophic bacteria, leaf and root endophytic and rizoplane, of three sugarcane varieties. The selection of inorganic phosphate solubilizing diazotrophic bacteria was assayed by the solubilization index (SI) in solid medium containing insoluble phosphate. The genetic variability was analyzed by the BOX-PCR technique. The results showed that 74% of the diazotrophic strains were able to solubilize inorganic phosphate, presenting classes of different SI. The results showed that the vegetal tissue and the genotype plant influenced in the interaction between phosphate solubilizing diazotrophic bacteria and sugarcane plants. BOX-PCR revealed high genetic variability among the strains analyzed. So, sugarcane-associated diazotrophic bacteria express the capacity to solubilize inorganic phosphate and they present high genetic diversity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surface microflora (902 isolates) of Livarot cheeses from three dairies was investigated during ripening. Yeasts were mainly identified by Fourier transform infrared spectroscopy. Geotrichum candidum was the dominating yeast among 10 species. Bacteria were identified using Biotype 100 strips, dereplicated by repetitive extragenic palindromic PCR (rep-PCR); 156 representative strains were identified by either BOX-PCR or (GTG) 55-PCR, and when appropriate by 16S rDNA sequencing and SDS-PAGE analysis. Gram-positive bacteria accounted for 65% of the isolates and were mainly assigned to the genera Arthrobacter, Brevibacterium, Corynebacterium, and Staphylococcus. New taxa related to the genera Agrococcus and Leucobacter were found. Yeast and Gram-positive bacteria strains deliberately added as smearing agents were sometimes undetected during ripening. Thirty-two percent of the isolates were Gram-negative bacteria, which showed a high level of diversity and mainly included members of the genera Alcaligenes, Hafnia, Proteus, Pseudomonas, and Psychrobacter. Whatever the milk used (pasteurized or unpasteurized), similar levels of biodiversity were observed in the three dairies, all of which had efficient cleaning procedures and good manufacturing practices. It appears that some of the Gramnegative bacteria identified should now be regarded as potentially useful in some cheese technologies. The assessment of their positive versus negative role should be objectively examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aims to evaluate the phenotypical characteristics of bacterial isolates from mulungu (Erythrina velutina Willd.) nodules and determinate their Box-PCR fingerprinting. All bacteria were evaluated by the following phenotypic characteristics: growth rate, pH change, colony color and mucus production. The bacterial isolates able to re-nodulate the original host were also evaluated regarding its tolerance to increased salinity and different incubation temperatures, ability to growth using different carbon sources, intrinsic antibiotic resistance and ?in vitro? auxin biosynthesis. The molecular fingerprints were set up using the Box-PCR technique and the isolates were clustered by their profiles. Among the 22 bacterial isolates obtained, eight were able to re-nodulate the original host. Among the nodule inducing isolates, some were tolerant to 1% of NaCl and 39° C and all of them metabolized the maltose, fructose, glucose, sucrose and arabinose, were resistant to rifampicin and produced auxin. The bacteria showed low genetic similarity among them and reference strains, which indicates the great genetic variability of the isolates. The results of this work are the first reports about the bacterial isolates able to nodulate this species. A more deep study of these bacteria may reveal the existence of isolates tolerant to environmental stresses and suitable as a future mulungu inoculant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

通过PCR克隆的方法,从黄鳝(Monopterus albus)中得到两个PL10 基因的cDNA片段Mo PL10A和Mo PL10B,长度均为1.127 kb,推测其编码375个氨基酸的蛋白片段.结合其他PL10类同源物序列,对这两条cDNA进行了分析和初步的功能推测.根据此片段的氨基酸序列构建的系统发育树与形态分类结果一致.在不同组织中的RT PCR结果表明Mo PL10A和Mo PL10B的mRNA在各组织中的分布有差异.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Solute carrier 2a2 (Slc2a2) gene codifies the glucose transporter GLUT2, a key protein for glucose flux in hepatocytes and renal epithelial cells of proximal tubule. In diabetes mellitus, hepatic and tubular glucose output has been related to Slc2a2/GLUT2 overexpression; and controlling the expression of this gene may be an important adjuvant way to improve glycemic homeostasis. Thus, the present study investigated transcriptional mechanisms involved in the diabetes-induced overexpression of the Slc2a2 gene. MAIN METHODS: Hepatocyte nuclear factors 1α and 4α (HNF-1α and HNF-4α), forkhead box A2 (FOXA2), sterol regulatory element binding protein-1c (SREBP-1c) and the CCAAT-enhancer-binding protein (C/EBPβ) mRNA expression (RT-PCR) and binding activity into the Slc2a2 promoter (electrophoretic mobility assay) were analyzed in the liver and kidney of diabetic and 6-day insulin-treated diabetic rats. KEY FINDINGS: Slc2a2/GLUT2 expression increased by more than 50% (P<0.001) in the liver and kidney of diabetic rats, and 6-day insulin treatment restores these values to those observed in non-diabetic animals. Similarly, the mRNA expression and the binding activity of HNF-1α, HNF-4α and FOXA2 increased by 50 to 100% (P<0.05 to P<0.001), also returning to values of non-diabetic rats after insulin treatment. Neither the Srebf1 and Cebpb mRNA expression, nor the SREBP-1c and C/EBP-β binding activity was altered in diabetic rats. SIGNIFICANCE: HNF-1α, HNF-4α and FOXA2 transcriptional factors are involved in diabetes-induced overexpression of Slc2a2 gene in the liver and kidney. These data point out that these transcriptional factors are important targets to control GLUT2 expression in these tissues, which can contribute to glycemic homeostasis in diabetes.