418 resultados para BILAYERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface of a soft elastic film becomes unstable and forms a self-organized undulating pattern because of adhesive interactions when it comes in contact proximity with a rigid surface. For a single film, the pattern length scale lambda, which is governed by the minimization of the elastic stored energy, gives lambda similar to 3h, where h is the film thickness. Based on a linear stability analysis and simulations of adhesion and debonding, we consider the contact instability of an elastic bilayer, which provides greater flexibility in the morphological control of interfacial instability. Unlike the case of a single film, the morphology of the contact instability patterns, debonding distance, and debonding force in a bilayer can be controlled in a nonlinear way by varying the thicknesses and shear moduli of the films. Interestingly, the pattern wavelength in a bilayer can be greatly increased or decreased compared to a single film when the adhesive contact is formed by the stiffer or the softer of the two films, respectively. In particular, lambda as small as 0.5h can be obtained. This indicates a new strategy for pattern miniaturization in elastic contact lithography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of different superconducting (S)/ferromagnetic (F) heterostructures grown by pulsed laser deposition reveal that the activation energy (U) for the vortex motion in a high T-c superconductor is reduced remarkably by the presence of F layers. The U exhibits a logarithmic dependence on the applied magnetic field in the S/F bilayers suggesting the existence of decoupled two-dimensional (2D) pancake vortices. This result is discussed in terms of the reduction in the effective S layer thickness and the weakening of the S coherence length due to the presence of F layers. In addition, the U and the superconducting T-c in YBa2Cu3O7-delta/La0.5Sr0.5CoO3 bilayers are observed to be much lower than in the YBa2Cu3O7-delta/La0.7Sr0.3MnO3 ones. This in turn suggests that the degree of spin polarization of the F layer might not play a crucial role for the suppression of superconductivity due to a spin polarized induced pair-breaking effect in S/F bilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the influence of polymer grafted bilayers on the physicomechanical properties of lipid membranes is important while developing liposomal based drug delivery systems. The melting characteristics and bending moduli of polymer grafted bilayers are investigated using dissipative particle dynamics simulations as a function of the amount of grafted polymer and lipid tail length. Simulations are carried out using a modified Andersen barostat, whereby the membrane is maintained in a tensionless state. For lipids made up of four to six tail beads, the transition from the low temperature L-beta phase to the L-alpha phase is lowered only above a grafting fraction of G(f)=0.12 for polymers made up of 20 beads. Below G(f)=0.12 small changes are observed only for the HT4 bilayer. The bending modulus of the bilayers is obtained as a function of G(f) from a Fourier analysis of the height fluctuations. Using the theory developed by Marsh Biochim. Biophys. Acta 1615, 33 (2003)] for polymer grafted membranes, the contributions to the bending modulus due to changes arising from the grafted polymer and bilayer thinning are partitioned. The contributions to the changes in kappa from bilayer thinning were found to lie within 11% for the lipids with four to six tail beads, increasing to 15% for the lipids containing nine tail beads. The changes in the area stretch modulus were also assessed and were found to have a small influence on the overall contribution from membrane thinning. The increase in the area per head group of the lipids was found to be consistent with the scalings predicted by self-consistent mean field results. (C) 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely known that the compressed monolayers and bilayers of chiral lipids or fatty acids form helical morphologies, while the corresponding racemic modification gives only flat platelets without twist. No molecular explanation of this phenomenon is yet available, although subtle interactions at the chiral centers have often been proposed as the driving force behind the morphology of the aggregate to form a particular shape. In the present study, the morphologies of the chiral amphiphilic assemblies have been predicted on the basis of an effective pair potential between the molecules, which depends on the relative sizes of the groups attached to the chiral centers, the orientation of the amphiphilic molecules and also on the distance between them. It is shown that fur a pair of same kind of enantiomers, the minimum energy conformation favours a twist angle between them. This twist between the neighbouring molecules gives rise to the helicity of the aggregate. The present theory also shows from the molecular considerations that for a pair of mirror-image isomers (i.e. the racemic modification) the minimum energy conformation corresponds to the zero angle between the molecules, thus giving rise to flat platelets as observed in experiments. Another fascinating aspect of such chirality driven helical structures is that the sense (or the handedness) of the helix is highly specific about the chirality of the monomer concerned. The molecular theory shows, for the first time, that the sense of the helical structures in many cases is determined by the sizes of the groups attached to the chiral centers and the effective potential between them. The predicted senses of the helical structures are in complete agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well-known that the senses (or the handedness) of the helical assemblies formed from compressed monolayers and bilayers of chiral amphiphiles are highly specific about the chirality of the monomers concerned. We present here a molecular approach that can successfully predict the senses of such helical morphologies. The present approach is based on a reduced tractable description in terms of an effective pair potential (EPP) which depends on the distance of separation and the relative orientations of the two amphiphiles. This approach explicitly considers the pairwise intermolecular interactions between the groups attached to the chiral centers of the two neighboring amphiphiles. It is found that for a pair of the same kind of enantiomers the minimum energy configuration favors a twist angle between molecules and that this twist from neighbor to neighbor gives rise to the helicity of the aggregate. From the known twist angles at the minimum energy configuration the successive arrangement of an array of molecules can be predicted. Therefore, the sense of the helicity can be predicted from the molecular interactions. The predicted senses of the helical structures are in complete agreement with all known experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single perovskite slab alkylammonium lead iodides (CnH2n+1NH3)(2)PbI4, n = 12, 16, 18, display two phase transitions, just above room temperature, associated with changes in the alkylammonium chains. We have followed these two phase transitions using scanning calorimetry, X-ray powder diffraction, and IR and Raman spectroscopies. We find the first phase transition to be associated with symmetry changes arising from a dynamic rotational disordering of the ammonium headgroup of the chain whereas the second transition, the melting of the chains in two dimensions, is characterized by an increased conformational disorder of the methylene units of the alkyl chains. We examine these phase transitions in light of the interesting optical properties of these materials, as well as the relevance of these systems as models for phase transitions in lipid bilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations of electroporation in POPC and DPPC lipid bilayers have been carried out at different temperatures ranging from 230 K to 350 K for varying electric fields. The dynamics of pore formation, including threshold field, pore initiation time, pore growth rate, and pore closure rate after the field is switched off, was studied in both the gel and liquid crystalline (L-alpha) phases of the bilayers. Using an Arrhenius model of pore initiation kinetics, the activation energy for pore opening was estimated to be 25.6 kJ mol(-1) and 32.6 kJ mol(-1) in the L-alpha phase of POPC and DPPC lipids respectively at a field strength of 0.32 V nm(-1). The activation energy decreases to 24.2 kJ mol(-1) and 23.7 kJ mol(-1) respectively at a higher field strength of 1.1 V nm(-1). At temperatures below the melting point, the activation energy in the gel phase of POPC and DPPC increases to 28.8 kJ mol(-1) and 34.4 kJ mol(-1) respectively at the same field of 1.1 V nm(-1). The pore closing time was found to be higher in the gel than in the L-alpha phase. The pore growth rate increases linearly with temperature and quadratically with field, consistent with viscosity limited growth models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The serotonin(1A) receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin(1A) receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3s, to analyze the effect of cholesterol on the structure and dynamics of the serotonin(1A) receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin(1A) receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 degrees C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooperative director fluctuations in lipid bilayers have been postulated for many years. ^2H-NMR T_1^(-1), T_(1P)^(-1) , and T_2^(-1); measurements have been used identify these motions and to determine the origin of increased slow bilayer motion upon addition of unlike lipids or proteins to a pure lipid bilayer.

The contribution of cooperative director fluctuations to NMR relaxation in lipid bilayers has been expressed mathematically using the approach of Doane et al.^1 and Pace and Chan.^2 The T_2^(-1)’s of pure dimyristoyllecithin (DML) bilayers deuterated at the 2, 9 and 10, and all positions on both lipid hydrocarbon chains have been measured. Several characteristics of these measurements indicate the presence of cooperative director fluctuations. First of all, T_2^(-1) exhibits a linear dependence on S2/CD. Secondly, T_2^(-1) varies across the ^2H-NMR powder pattern as sin^2 (2, β), where , β is the angle between the average bilayer director and the external magnetic field. Furthermore, these fluctuations are restricted near the lecithin head group suggesting that the head group does not participate in these motions but, rather, anchors the hydrocarbon chains in the bilayer.

T_2^(-1)has been measured for selectively deuterated liquid crystalline DML hilayers to which a host of other lipids and proteins have been added. The T_2^(-1) of the DML bilayer is found to increase drastically when chlorophyll a (chl a) and Gramicidin A' (GA') are added to the bilayer. Both these molecules interfere with the lecithin head group spacing in the bilayer. Molecules such as myristic acid, distearoyllecithin (DSL), phytol, and cholesterol, whose hydrocarbon regions are quite different from DML but which have small,neutral polar head groups, leave cooperative fluctuations in the DML bilayer unchanged.

The effect of chl a on cooperative fluctuations in the DML bilayer has been examined in detail using ^2H-NMR T_1^(-1), T_(1P)^(-1) , and T_2^(-1); measurements. Cooperative fluctuations have been modelled using the continuum theory of the nematic state of liquid crystals. Chl a is found to decrease both the correlation length and the elastic constants in the DML bilayer.

A mismatch between the hydrophobic length of a lipid bilayer and that of an added protein has also been found to change the cooperative properties of the lecithin bilayer. Hydrophobic mismatch has been studied in a series GA' / lecithin bilayers. The dependence of 2H-NMR order parameters and relaxation rates on GA' concentration has been measured in selectively deuterated DML, dipalmitoyllecithin (DPL), and DSL systems. Order parameters, cooperative lengths, and elastic constants of the DML bilayer are most disrupted by GA', while the DSL bilayer is the least perturbed by GA'. Thus, it is concluded that the hydrophobic length of GA' best matches that of the DSL bilayer. Preliminary Raman spectroscopy and Differential Scanning Calorimetry experiments of GA' /lecithin systems support this conclusion. Accommodation of hydrophobic mismatch is used to rationalize the absence of H_(II) phase formation in GA' /DML systems and the observation of H_(II) phase in GA' /DPL and GA' /DSL systems.

1. J. W. Doane and D. L. Johnson, Chem. Phy3. Lett., 6, 291-295 (1970). 2. R. J. Pace and S. I. Chan, J. Chem. Phy3., 16, 4217-4227 (1982).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bilayer quantum Hall state at total filling factor νT=1, where the total electron density matches the degeneracy of the lowest Landau level, is a prominent example of Bose-Einstein condensation of excitons. A macroscopically ordered state is realized where an electron in one layer is tightly bound to a "hole" in the other layer. If exciton transport were the only bulk transportmechanism, a current driven in one layer would spontaneously generate a current of equal magnitude and opposite sign in the other layer. The Corbino Coulomb drag measurements presented in this thesis demonstrate precisely this phenomenon.

Excitonic superfluidity has been long sought in the νT=1 state. The tunneling between the two electron gas layers exihibit a dc Josephson-like effect. A simple model of an overdamped voltage biased Josephson junction is in reasonable agreement with the observed tunneling I-V. At small tunneling biases, it exhibits a tunneling "supercurrent". The dissipation is carefully studied in this tunneling "supercurrent" and found to remain small but finite.