946 resultados para Arthropods, Gene order, Onychophora, Phylogeny, Velvet worms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mitochondrial DNA of the rice frog, Fejervarya limnocharis (Amphibia, Anura), was obtained using long-and-accurate polymerase chain reaction (LA-PCR) combining with subcloning method. The complete nucleotide sequence (17,717 bp) of mitochondrial genome was determined subsequently. This mitochondrial genome is characterized by four distinctive features: the translocation of ND5 gene, a cluster of rearranged tRNA genes (tRNA(Thr), tRNA(Pro), tRNA(Leu) ((CUN))) a tandem duplication of tRNA(Mer) gene, and eight large 89-bp tandem repeats in the control region, as well as three short noncoding regions containing two repeated motifs existing in the gene cluster of ND5/tRNA(Thr)/tRNA(Pro)/tRNA(Leu)/tRNA(Phe). The tandem duplication of gene regions followed by deletions of supernumerary genes can be invoked to explain the shuffling of tRNAM(Met) and a cluster of tRNA and ND5 genes, as observed in this study. Both ND5 gene translocation and tandem duplication of tRNA(Met) were first observed in the vertebrate mitochondrial genomes. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete mitochondrial DNA sequence was determined for the Australian freshwater crayfish Cherax destructor (Crustacea: Decapoda: Parastacidae). The 15,895-bp genome is circular with the same gene composition as that found in other metazoans. However, we report a novel gene arrangement with respect to the putative arthropod ancestral gene order and all other arthropod mitochondrial genomes sequenced to date. It is apparent that 11 genes have been translocated (ND1, ND4, ND4L, Cyt b, srRNA, and tRNAs Ser(UGA), Leu(CUN), Ile, Cys, Pro, and Val), two of which have also undergone inversions (tRNAs Pro and Val). The ‘duplication/random loss’ mechanism is a plausible model for the observed translocations, while ‘intramitochondrial recombination’ may account for the gene inversions. In addition, the arrangement of rRNA genes is incompatible with current mitochondrial transcription models, and suggests that a different transcription mechanism may operate in C. destructor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The Mannheimia subclades belong to the same bacterial genus, but have taken divergent paths toward their distinct lifestyles. For example, M. haemolytica + M. glucosida are potential pathogens of the respiratory tract in the mammalian suborder Ruminantia, whereas M. ruminalis, the supposed sister group, lives as a commensal in the ovine rumen. We have tested the hypothesis that vertical inheritance of the leukotoxin (lktCABD) operon has occurred from the last common ancestor of genus Mannheimia to any ancestor of the diverging subclades by exploring gene order data. RESULTS: We examined the gene order in the 5' flanking region of the leukotoxin operon and found that the 5' flanking gene strings, hslVU-lapB-artJ-lktC and xylAB-lktC, are peculiar to M. haemolytica + M. glucosida and M. granulomatis, respectively, whereas the gene string hslVU-lapB-lktC is present in M. ruminalis, the supposed sister group of M. haemolytica + M. glucosida, and in the most ancient subclade M. varigena. In M. granulomatis, we found remnants of the gene string hslVU-lapB-lktC in the xylB-lktC intergenic region. CONCLUSION: These observations indicate that the gene string hslVU-lapB-lktC is more ancient than the hslVU-lapB-artJ-lktC and xylAB-lktC gene strings. The presence of (remnants of) the ancient gene string hslVU-lapB-lktC among any subclades within genus Mannheimia supports that it has been vertically inherited from the last common ancestor of genus Mannheimia to any ancestor of the diverging subclades, thus reaffirming the hypothesis of vertical inheritance of the leukotoxin operon. The presence of individual 5' flanking regions in M. haemolytica + M. glucosida and M. granulomatis reflects later genome rearrangements within each subclade. The evolution of the novel 5' flanking region in M. haemolytica + M. glucosida resulted in transcriptional coupling between the divergently arranged artJ and lkt promoters. We propose that the chimeric promoter have led to high level expression of the leukotoxin operon which could explain the increased potential of certain M. haemolytica + M. glucosida strains to cause a particular type of infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial genomes of all vertebrate animals analyzed to date have the same 37 genes, whose arrangement in the circular DNA molecule varies only in the relative position of a few genes. This relative conservation suggests that mitochondrial gene order characters have potential utility as phylogenetic markers for higher-level vertebrate taxa. We report discovery of a mitochondrial gene order that has had multiple independent originations within birds, based on sampling of 137 species representing 13 traditionally recognized orders. This provides evidence of parallel evolution in mitochondrial gene order for animals. Our results indicate operation of physical constraints on mitochondrial gene order changes and support models for gene order change based on replication error. Bird mitochondria have a displaced OL (origin of light-strand replication site) as do various other Reptilia taxa prone to gene order changes. Our findings point to the need for broad taxonomic sampling in using mitochondrial gene order for phylogenetic analyses. We found, however, that the alternative mitochondrial gene orders distinguish the two primary groups of songbirds (order Passeriformes), oscines and suboscines, in agreement with other molecular as well as morphological data sets. Thus, although mitochondrial gene order characters appear susceptible to some parallel evolution because of mechanistic constraints, they do hold promise for phylogenetic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To better understand the evolution of mitochondrial (mt) genomes in the Acari (mites and ticks), we sequenced the mt genome of the chigger mite, Leptotrombidium pallidum (Arthropoda: Acari: Acariformes). This genome is highly rearranged relative to that of the hypothetical ancestor of the arthropods and the other species of Acari studied. The mt genome of L. pallidum has two genes for large subunit rRNA, a pseudogene for small subunit rRNA, and four nearly identical large noncoding regions. Nineteen of the 22 tRNAs encoded by this genome apparently lack either a T-arm or a D-arm. Further, the mt genome of L. pallidum has two distantly separated sections with identical sequences but opposite orientations of transcription. This arrangement cannot be accounted for by homologous recombination or by previously known mechanisms of mt gene rearrangement. The most plausible explanation for the origin of this arrangement is illegitimate inter-mtDNA recombination, which has not been reported previously in animals. In light of the evidence from previous experiments on recombination in nuclear and mt genomes of animals, we propose a model of illegitimate inter-mtDNA recombination to account for the novel gene content and gene arrangement in the mt genome of L. pallidum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The family Cyprinidae is one of the largest families of fishes in the world and a well-known component of the East Asian freshwater fish fauna. However, the phylogenetic relationships among cyprinids are still poorly understood despite much effort paid on the cyprinid molecular phylogenetics. Original nucleotide sequence data of the nuclear recombination activating gene 2 were collected from 109 cyprinid species and four non-cyprinid cypriniform outgroup taxa and used to infer the cyprinid phylogenetic relationships and to estimate node divergence times. Phylogenetic reconstructions using maximum parsimony, maximum likelihood, and Bayesian analysis retrieved the same clades, only branching order within these clades varied slightly between trees. Although the morphological diversity is remarkable, the endemic cyprinid taxa in East Asia emerged as a monophyletic clade referred to as Xenocypridini. The monophyly for the subfamilies including Cyprininae and Leuciscinae, as well as the tribes including Labeonini, Gobionini, Acheilognathini, and Leuciscini, was also well resolved with high nodal support. Analysis of the RAG2 gene supported the following cyprinid molecular phylogeny: the Danioninae is the most basal subfamily within the family Cyprinidae and the Cyprininae is the sister group of the Leuciscinae. The divergence times were estimated for the nodes corresponding to the principal clades within the Cyprinidae. The family Cyprinidae appears to have originated in the mid-Eocene in Asia, with the cladogenic event of the key basal group Danioninae occurring in the early Oligocene (about 31-30 MYA), and the origins of the two subfamilies, Cyprininae and Leuciscinae, occurring in the mid-Oligocene (around 26 MYA). (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete sequence of the 16,539 nucleotide mitochondrial genome from the single species of the catfish family Cranoglanididae, the helmet catfish Cranoglanis bouderius, was determined using the long and accurate polymerase chain reaction (LA PCR) method. The nucleotide sequences of C. bouderius mitochondrial DNA have been compared with those of three other catfish species in the same order. The contents of the C. bouderius mitochondrial genome are 13 protein-coding genes, two ribosomal RNA and 22 transfer RNA genes, and a non-coding control region, the gene order of which is identical to that observed in most other vertebrates. Phylogenetic analyses for 13 otophysan fishes were performed using Bayesian method based on the concatenated mtDNA protein-coding gene sequence and the individual protein-coding gene sequence data set. The competing otophysan topologies were then tested by using the approximately unbiased test, the Kishino-Hasegawa test, and the Shimodaira-Hasegawa test. The results show that the grouping ((((Characifonnes, Gymnotiformes), Siluriformes), Cyprinifionnes), outgroup) is the most likely but there is no significant difference between this one and the other alternative hypotheses. In addition, the phylogenetic placement of the family Cranoglanididae among siluriform families was also discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Ayes). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die phylogenetische Position der Mollusken innerhalb der Trochozoa sowie die interne Evolution der Klassen der Mollusca sind weitgehend unbekannt und wurden in meiner Arbeit anhand molekularer Merkmale untersucht. Phylogenomische Analysen zeigten in der Vergangenheit eine gute Auflösung für ursprüngliche Speziationsereignisse. Daher wurden hier drei neue EST Datensätze generiert: für Sipunculus nudus (Sipuncula), Barentsia elongata (Kamptozoa) und Lepidochitona cinerea, (Polyplacophora, Mollusca). Zusätzlich wurden gezielt Gene verschiedener Mollusken mittels RT-PCR amplifiziert. rnSowohl Kamptozoen als auch Sipunculiden wurden aufgrund morphologischer Kriterien bisher als mögliche Schwestergruppe der Mollusken gehandelt, aber die hier erzielten Ergebnisse zur Evolution der Hämerythrine, Gen-Anordnungen der mitochondrialen Genome und phylogenetische Analysen der ribosomalen und der mitochondriellen Proteine stützen diese Hypothese nicht. Die Position der Kamptozoa erwies sich hier generell als unbeständig; phylogenomische Analysen deuten eine Nähe zu den Bryozoen an, aber diese Position wird stark durch die Auswahl der Taxa beeinflusst. Dagegen weisen meine Analysen klar auf eine nähere Beziehung zwischen Annelida und Sipuncula hin. Die ribosomalen Proteine zeigen Sipuncula (und Echiura) sogar als Subtaxa der Anneliden. Wie den Mollusken fehlt den Sipunculiden jegliche Segmentierung und meine Ergebnisse legen hier die Möglichkeit des Verlusts dieses Merkmals innerhalb der Anneliden bei den Sipunculiden nahe. Innerhalb der Mollusken wurden die Solenogastren bereits als Schwestergruppe aller rezenten Mollusken vorgeschlagen. Im Rahmen meiner Arbeit wurden von drei verschiedenen Solenogastren-Arten die ersten zuverlässigen 18S rRNA-Sequenzen ermittelt, und es zeigte sich, dass alle bisher veröffentlichten 18S-Sequenzen dieser Molluskenklasse höchst unvollständig oder fehlerhaft sind. rnRibosomale Proteine sind gute phylogenetische Marker und hier wurden die Auswahl und Anzahl dieser Gene für phylogenetische Analysen optimiert. Über Sonden-basierte Detektion wurde eine sampling-Strategie getestet, die im Vergleich mit standard-phylogenomischen Ansätzen zukünftige molekulare Stammbaumrekonstruktionen mit größerem Taxonsampling ermöglicht.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene content of a mitochondrial (mt) genome, i.e., 37 genes and a large noncoding region (LNR), is usually conserved in Metazoa. The arrangement of these genes and the LNR is generally conserved at low taxonomic levels but varies substantially at high levels. We report here a variation in mt gene content and gene arrangement among chigger mites of the genus Leptotrombidium. We found previously that the mt genome of Leptotrombidium pallidum has an extra gene for large-subunit rRNA (rrnL), a pseudo-gene for small-subunit rRNA (PrrnS), and three extra LNRs, additional to the 37 genes and an LNR typical of Metazoa. Further, the arrangement of mt genes of L. pallidum differs drastically from that of the hypothetical ancestor of the arthropods. To find to what extent the novel gene content and gene arrangement occurred in Leptotrombidium, we sequenced the entire or partial mt genomes of three other species, L. akamushi, L. deliense, and L. fletcheri. These three species share the arrangement of all genes with L. pallidum, except trnQ (for tRNA-glutamine). Unlike L. pallidum, however, these three species do not have extra rrnL or PrrnS and have only one extra LNR. By comparison between Leptotrombidium species and the ancestor of the arthropods, we propose that (1) the type of mt genome present in L. pallidum evolved from the type present in the other three Leptotrombidium species, and (2) three molecular mechanisms were involved in the evolution of mt gene content and gene arrangement in Leptotrombidium species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coleoptera is the most diverse group of insects with over 360,000 described species divided into four suborders: Adephaga, Archostemata, Myxophaga, and Polyphaga. In this study, we present six new complete mitochondrial genome (mtgenome) descriptions, including a representative of each suborder, and analyze the evolution of mtgenomes from a comparative framework using all available coleopteran mtgenomes. We propose a modification of atypical cox1 start codons based on sequence alignment to better reflect the conservation observed across species as well as findings of TTG start codons in other genes. We also analyze tRNA-Ser(AGN) anticodons, usually GCU in arthropods, and report a conserved UCU anticodon as a possible synapomorphy across Polyphaga. We further analyze the secondary structure of tRNA-Ser(AGN) and present a consensus structure and an updated covariance model that allows tRNAscan-SE (via the COVE software package) to locate and fold these atypical tRNAs with much greater consistency. We also report secondary structure predictions for both rRNA genes based on conserved stems. All six species of beetle have the same gene order as the ancestral insect. We report noncoding DNA regions, including a small gap region of about 20 bp between tRNA-Ser(UCN) and nad1 that is present in all six genomes, and present results of a base composition analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the complete mitochondrial genome (accession number: LK995454) of an iconic Australian species, the eastern grey kangaroo (Macropus giganteus). The mitogenomic organization is consistent with other marsupials, encoding 13 protein-coding genes, 22 tRNA genes, 2 ribosomal RNA genes, an origin of light strand replication and a control region or Dloop. No repetitive sequences were detected in the control region. The M. giganteus mitogenome exemplifies a combination of tRNA gene order and structural peculiarities that appear to be unique to marsupials. We present a maximum likelihood phylogeny based on complete mitochondrial protein and RNA coding sequences that confirms the phylogenetic position of the grey kangaroo among macropodids.