967 resultados para Aquecimento coronal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present work, we have studied the nature of the physical processes of the coronal heating, considering as basis significant samples of single and binary evolved stars, that have been achieved with the ROSAT satellite. In a total of 191 simple stars were studied, classified in the literature as giants with spectral type F, G and K. The results were compared with those obtained from 106 evolved stars of spectral type F, G and K, which belong to the spectroscopic binary systems. Accurate measurements on rotation and information about binarity were obtained from De Medeiros s catalog. We have analysed the behavior of the coronal activity in function of diverse stellar parameters. With the purpose to better clarify the profile of the stars evolution, the HR diagram was built for the two samples of stars, the single and the binary ones. The evolved traces added in the diagram were obtained from the Toulouse-Geneve code, Nascimento et al. (2000). The stars were segregated in this diagram not only in range of rotational speed but also in range of X-ray flux. Our analysis shows clearly that the single stars and the binary ones have coronal activity controlled by physical process independent on the rotation. Non magnetic processes seem to be strongly influencing the coronal heating. For the binary stars, we have also studied the behavior of the coronal emission as a function of orbital parameters, such as period and eccentricity, in which it was revealed the existence of a discontinuity in the emission of X-rays around an orbital period of 100 days. The study helped to conclude that circular orbits of the binary stars are presented as a necessary property for the existence of a higher level ofX-rays emission, suggesting that the effect of the gravitational tide has an important role in the coronal activity level. When applied the Kolmogorov-Smirnov test (KS test ) for the Vsini and FX parameters to the samples of single and binary stars, we could evidence very relevant aspects for the understanding of the mechanisms inherent to the coronal activity. For the Vsini parameter, the differences between the single stars and the binary ones for rotation over 6.3 km/s were really remarkable. We believe, therefore, that the existence of gravitational tide is, at least, one of the factors that most contribute for this behavior. About the X-rays flux, the KS test showed that the behavior of the single and the binary stars, regarding the coronal activity, comes from the same origin

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work we study the processes of heating in the high stellar atmosphere, with base in an analysis of behavior of the cromospheric and coronal emission for a sample of single stars classified as giant in the literature. The evolutionary status of the stars of the sample was determined from HIPPARCOS satellite trigonometric parallax measurements and from the Toulouse Genéve code. In this study we show the form of behavior of the CaII emission flux in spectral lines H and K F(CaII) and the X-ray emission flux in function of the rotation, number of Rossby Ro and depth in mass of the convective envelope. In this analysis we show that while the cromospheric activity is dominated clearly by a physical process of heating associated with the rotation, like a magnetic field produced by dynamo effect, the coronal activity seems to be influenced for a mechanism independent of the rotation. We show also that the effective role of the depth in massa of the convective envelope on the stellar activity has an important effect in the responsible physical process for the behavior of the activity in the atmosphere of the stars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this dissertation we propose a Teaching Unit of Physics to teach content through environmental discussions of the greenhouse effect and global warming. This teaching unit is based on a problem-methodological intervention from the application of the method of the Arch of Charles Maguerez. The methodological foundations of the thesis are embedded in action research and this is structured in five chapters: the first chapter deals with the Physical Environment (FMA) as a subject in Degree Courses in Physics in Brazil, bringing the concern of how this discipline has been taught. We started the first chapter explaining the reasons behind the inclusion of the discipline of Physical Environment in a Physics Degree Courses. Then we did a search on the websites of Institutions of Higher Education, to know of the existence or not of this discipline on curricular. We then analyzed the menus to see what bibliographies are being adopted and what content of Physics are being worked, and how it has been done. The courses surveyed were those of Federal and Federal Institutes Universities. Thus ended the first chapter. Given the inseparability between studies in Physics Teaching and studies on competencies, skills and significant learning, wrote the second chapter. In this chapter we discuss the challenge of converting information into knowledge. Initially on initial teacher training, because even if this is not our focus, the study is a discipline on the upper reaches, therefore, offered to future teachers. Then we talked about the culture of knowledge, where we emphasize the use of a teaching approach that promotes meanings taught by content and make sense to the student. We finished the third chapter, making some considerations on skills and abilities, in order to identify what skills and competencies were developed and worked during and after the implementation of Curriculum Unit. The third chapter is the result of a literature review and study of the radioactive EarthSun interaction. The subjects researched approach from the generation of energy in the sun to topics stain solar coronal mass ejections, solar wind, black body radiation, Wien displacement law, Stefan-Boltzmann Law, greenhouse effect and global warming. This chapter deals with material support for the teacher of the aforementioned discipline. The fourth chapter talks about the arc method of Charles Maguerez; Here we explain the structure of each of the five steps of the Arc and how to use them in teaching. We also show another version of this method adapted by Bordenave. In the fifth and final chapter brought a description of how the method of Arc was used in physics classes of Environment, with students majoring in Physics IFRN Campus Santa Cruz. Here, in this chapter, a transcript of classes to show how was the application of a problem-based methodology in the teaching of content proposed for Physics Teaching Unit from the environmental discussion about the greenhouse effect and global warming phenomena

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Footwear is designed to reduce injury, and enhance performance. However, the effect footwear has on foot and ankle kinematics currently remains unknown. Acknowledging the need for improved understanding, multi-segment models of the foot-shoe complex need to be established to both describe and quantify the effect footwear has on the foot and ankle during stance phase of gait. The purpose of this study was to quantify how footwear alters the kinematics of the foot inside the shoe during stance phase of walking gait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be determined. This study used CT scans of AIS patients to measure segmental torso masses and explores how joint moments in the coronal plane are affected by changes in the position of the intervertebral joint’s axis of rotation; particularly at the apex of a scoliotic major curve. Methods. Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint torques occurring in the spine for a group of 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). Image processing software, ImageJ (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass corresponding to each vertebral level. Body segment masses for the head, neck and arms were taken from published anthropometric data. Intervertebral (IV) joint torques at each vertebral level were found using principles of static equilibrium together with the segmental body mass data. Summing the torque contributions for each level above the required joint, allowed the cumulative joint torque at a particular level to be found. Since there is some uncertainty in the position of the coronal plane Instantaneous Axis of Rotation (IAR) for scoliosis patients, it was assumed the IAR was located in the centre of the IV disc. A sensitivity analysis was performed to see what effect the IAR had on the joint torques by moving it laterally 10mm in both directions. Results. The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint torques during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm being found in patient 13. Shifting the assumed IAR by 10mm towards the convexity of the spine, increased the joint torque at that level by a mean 9.0%, showing that calculated joint torques were moderately sensitive to the assumed IAR location. When the IAR midline position was moved 10mm away from the convexity of the spine, the joint torque reduced by a mean 8.9%. Conclusion. Coronal plane joint torques as high as 7Nm can occur during relaxed standing in scoliosis patients, which may help to explain the mechanics of AIS progression. This study provides new anthropometric reference data on vertebral level-by-level torso mass in AIS patients which will be useful for biomechanical models of scoliosis progression and treatment. However, the CT scans were performed in supine (no gravitational load on spine) and curve magnitudes are known to be smaller than those measured in standing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. This study used supine CT scans of AIS patients to measure segmental torso masses and explored the joint moments in the coronal plane, particularly at the apex of a scoliotic major curve. Methods: Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint moments occurring in the spine for a group of 20 female AIS patients with right sided thoracic curves. The mean age was 15.0 ± 2.7 years and all curves were classified Lenke Type 1 with a mean Cobb angle 52 ± 5.9°. Image processing software, ImageJ (v1.45 NIH USA) was used to create reformatted coronal plane images, reconstruct vertebral level-by-level torso segments and subsequently measure the torso volume corresponding to each vertebral level. Segment mass was then determined by assuming a tissue density of 1.04x103 kg/m3. Body segment masses for the head, neck and arms were taken from published anthropometric data (Winter 2009). Intervertebral joint moments in the coronal plane at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres with the segmental body mass data. Results and Discussion: The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint moments during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm. The CT scans were performed in the supine position and curve magnitudes are known to be 7-10° smaller than those measured in standing, due to the absence of gravity acting on the spine. Hence, it can be expected that the moments produced by gravity in the standing individual will be greater than those calculated here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between coronal knee laxity and the restraining properties of the collateral ligaments remains unknown. This study investigated correlations between the structural properties of the collateral ligaments and stress angles used in computer-assisted total knee arthroplasty (TKA), measured with an optically based navigation system. Ten fresh-frozen cadaveric knees (mean age: 81 ± 11 years) were dissected to leave the menisci, cruciate ligaments, posterior joint capsule and collateral ligaments. The resected femur and tibia were rigidly secured within a test system which permitted kinematic registration of the knee using a commercially available image-free navigation system. Frontal plane knee alignment and varus-valgus stress angles were acquired. The force applied during varus-valgus testing was quantified. Medial and lateral bone-collateral ligament-bone specimens were then prepared, mounted within a uni-axial materials testing machine, and extended to failure. Force and displacement data were used to calculate the principal structural properties of the ligaments. The mean varus laxity was 4 ± 1° and the mean valgus laxity was 4 ± 2°. The corresponding mean manual force applied was 10 ± 3 N and 11 ± 4 N, respectively. While measures of knee laxity were independent of the ultimate tensile strength and stiffness of the collateral ligaments, there was a significant correlation between the force applied during stress testing and the instantaneous stiffness of the medial (r = 0.91, p = 0.001) and lateral (r = 0.68, p = 0.04) collateral ligaments. These findings suggest that clinicians may perceive a rate of change of ligament stiffness as the end-point during assessment of collateral knee laxity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. METHODS Existing low dose CT scans were used to calculate vertebral level-by-level torso masses and joint moments occurring in the spine for a group of female AIS patients with right-sided thoracic curves. Image processing software, ImageJ (v1.45 NIH USA) was used to reconstruct the torso segments and subsequently measure the torso volume and mass corresponding to each vertebral level. Body segment masses for the head, neck and arms were taken from published anthropometric data. Intervertebral joint moments at each vertebral level were found by summing each of the torso segment masses above the required joint and multiplying it by the perpendicular distance to the centre of the disc. RESULTS AND DISCUSSION Twenty patients were included in this study with a mean age of 15.0±2.7 years and a mean Cobb angle 52±5.9°. The mean total trunk mass, as a percentage of total body mass, was 27.8 (SD 0.5) %. Mean segmental torso mass increased inferiorly from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint moments during relaxed standing were typically 5-7Nm at the apex of the curve (Figure 1), with the highest apex joint of 7Nm. CT scans were performed in the supine position and curve magnitudes are known to be 7-10° smaller than those measured in standing [1]. Therefore joint moments produced by gravity will be greater than those calculated here. CONCLUSIONS Coronal plane joint moments as high as 7Nm can occur during relaxed standing in scoliosis patients, which may help to explain the mechanics of AIS progression. The body mass distributions calculated in this study can be used to estimate joint moments derived using other imaging modalities such as MRI and subsequently determine if a relationship exists between joint moments and progressive vertebral deformity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. To study the dynamics of coronal holes and the role of waves in the acceleration of the solar wind, spectral observations were performed over polar coronal hole regions with the SUMER spectrometer on SoHO and the EIS spectrometer on Hinode. Aims. Using these observations, we aim to detect the presence of propagating waves in the corona and to study their properties. Methods. The observations analysed here consist of SUMER spectra of the Ne VIII 770 angstrom line (T = 0.6 MK) and EIS slot images in the Fe XII 195 angstrom line (T = 1.3 MK). Using the wavelet technique, we study line radiance oscillations at different heights from the limb in the polar coronal hole regions. Results. We detect the presence of long period oscillations with periods of 10 to 30 min in polar coronal holes. The oscillations have an amplitude of a few percent in radiance and are not detectable in line-of-sight velocity. From the time distance maps we find evidence for propagating velocities from 75 km s(-1) (Ne VIII) to 125 km s(-1)(Fe XII). These velocities are subsonic and roughly in the same ratio as the respective sound speeds. Conclusions. We interpret the observed propagating oscillations in terms of slow magneto-acoustic waves. These waves can be important for the acceleration of the fast solar wind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersive characteristics of Alfvdn Surface Waves (ASW) along a moving plasma surrounded by a stationary plasma is discussed. The stability curves for the symmetric and the asymmetric modes are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Adolescent Idiopathic Scoliosis is the most common type of spinal deformity, and whilst the risk of progression appears to be biomechanically mediated (larger deformities are more likely to progress), the detailed biomechanical mechanisms driving progression are not well understood. Gravitational forces in the upright position are the primary sustained loads experienced by the spine. In scoliosis they are asymmetrical, generating moments about the spinal joints which may promote asymmetrical growth and deformity progression. Using 3D imaging modalities to estimate segmental torso masses allows the gravitational loading on the scoliotic spine to be determined. The resulting distribution of joint moments aids understanding of the mechanics of scoliosis progression. Methods Existing low-dose CT scans were used to estimate torso segment masses and joint moments for 20 female scoliosis patients. Intervertebral joint moments at each vertebral level were found by summing the moments of each of the torso segment masses above the required joint. Results The patients’ mean age was 15.3 years (SD 2.3; range 11.9 – 22.3 years); mean thoracic major Cobb angle 52° (SD 5.9°; range 42°-63°) and mean weight 57.5 kg (SD 11.5 kg; range 41 – 84.7 kg). Joint moments of up to 7 Nm were estimated at the apical level. No significant correlation was found between the patients’ major Cobb angles and apical joint moments. Conclusions Patients with larger Cobb angles do not necessarily have higher joint moments, and curve shape is an important determinant of joint moment distribution. These findings may help to explain the variations in progression between individual patients. This study suggests that substantial corrective forces are required of either internal instrumentation or orthoses to effectively counter the gravity-induced moments acting to deform the spinal joints of idiopathic scoliosis patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Taylor hypothesis has provided a model for the relaxed magnetic configurations of not only laboratory plasmas, but also of astrophysical plasmas. However, energy dissipation is possible only for systems which depart from a strict Taylor state, and hence a parameter describing that departure must be introduced, when the Taylor hypothesis is used to estimate the dissipation. An application of the Taylor hypothesis to the problem of coronal heating provides an insight into this difficult problem. When particular sorts of footpoint motions put energy and helicity in the corona, the conservation of helicity puts a constraint on how much of the energy can be dissipated. However, on considering a random distribution of footpoint motions, this constraint gets washed away, and the Taylor hypothesis is probably not going to play any significant role in the actual calculation of relevant physical quantities in the coronal heating problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present EIS/Hinode and SUMER/SOHO observations of propagating disturbances detected in coronal lines in inter-plume and plume regions of a polar coronal hole. The observation was carried out on 2007 November 13 as part of the JOP196/HOP045 program. The SUMER spectroscopic observation gives information about fluctuations in radiance and on both resolved (Doppler shift) and unresolved (Doppler width) line-of-sight velocities, whereas EIS 40 `'wide slot images detect fluctuations only in radiance but maximize the probability of overlapping field of view between the two instruments. From distance-time radiance maps, we detect the presence of propagating waves in a polar inter-plume region with a period of 15-20 minutes and a propagation speed increasing from 130 +/- 14 km s(-1) just above the limb to 330 +/- 140 km s(-1) around 160 `' above the limb. These waves can be traced to originate from a bright region of the on-disk part of the coronal hole where the propagation speed is in the range of 25 +/- 1.3 to 38 +/- 4.5 km s(-1), with the same periodicity. These on-disk bright regions can be visualized as the base of the coronal funnels. The adjacent plume region also shows the presence of propagating disturbances with the same range of periodicity but with propagation speeds in the range of 135 +/- 18 to 165 +/- 43 km s(-1) only. A comparison between the distance-time radiance map of the two regions indicates that the waves within the plumes are not observable (may be getting dissipated) far off-limb, whereas this is not the case in the inter-plume region. A correlation analysis was also performed to find out the time delay between the oscillations at several heights in the off-limb region, finding results consistent with those from the analysis of the distance-timemaps. To our knowledge, this result provides first spectroscopic evidence of the acceleration of propagating disturbances in the polar region close to the Sun (within 1.2 R/R-circle dot), which provides clues to the understanding of the origin of these waves. We suggest that the waves are likely either Alfvenic or fast magnetoacoustic in the inter-plume region and slow magnetoacoustic in the plume region. This may lead to the conclusion that inter-plumes are a preferred channel for the acceleration of the fast solar wind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some recent observations at Pic-du-Midi (Mulleret al., 1992a) suggest that the photospheric footpoints of coronal magnetic field lines occasionally move rapidly with typical velocities of the order 3 km s–1 for about 3 or 4 min. We argue that such occasional rapid footpoint motions could have a profound impact on the heating of the quiet corona. Qualitative estimates indicate that these occasional rapid motions can account for the entire energy flux needed to heat the quiet corona. We therefore carry out a mathematical analysis to study in detail the response of a vertical thin flux tube to photospheric footpoint motions in terms of a superposition of linear kink modes for an isothermal atmosphere. We find the resulting total energy that is asymptotically injected into an isothermal atmosphere (i.e., an atmosphere without any back reflection). By using typical parameter values for fast and slow footpoint motions, we show that, even if the footpoints spend only 2.5% of the time undergoing rapid motions, still these rapid motions could be more efficient in transporting energy to the corona than the slow motions that take place most of the time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronal holes are the coolest and darkest regions of the upper solar atmosphere, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. During the years of the solar minima, coronal holes are generally confined to the Sun's polar regions, while at solar maxima they can also be found at lower latitudes. Waves, observed via remote sensing and detected in-situ in the wind streams, are most likely responsible for the wind and several theoretical models describe the role of MHD waves in the acceleration of the fast solar wind. This paper reviews the observational evidences of detection of propagating waves in these regions. The characteristics of the waves, like periodicities, amplitude, speed provide input parameters and also act as constraints on theoretical models of coronal heating and solar wind acceleration.