988 resultados para Approximation methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plane wave discontinuous Galerkin (PWDG) methods are a class of Trefftz-type methods for the spatial discretization of boundary value problems for the Helmholtz operator $-\Delta-\omega^2$, $\omega>0$. They include the so-called ultra weak variational formulation from [O. Cessenat and B. Després, SIAM J. Numer. Anal., 35 (1998), pp. 255–299]. This paper is concerned with the a priori convergence analysis of PWDG in the case of $p$-refinement, that is, the study of the asymptotic behavior of relevant error norms as the number of plane wave directions in the local trial spaces is increased. For convex domains in two space dimensions, we derive convergence rates, employing mesh skeleton-based norms, duality techniques from [P. Monk and D. Wang, Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 121–136], and plane wave approximation theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we extend to the time-harmonic Maxwell equations the p-version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We design consistent discontinuous Galerkin finite element schemes for the approximation of the Euler-Korteweg and the Navier-Stokes-Korteweg systems. We show that the scheme for the Euler-Korteweg system is energy and mass conservative and that the scheme for the Navier-Stokes-Korteweg system is mass conservative and monotonically energy dissipative. In this case the dissipation is isolated to viscous effects, that is, there is no numerical dissipation. In this sense the methods are consistent with the energy dissipation of the continuous PDE systems. - See more at: http://www.ams.org/journals/mcom/2014-83-289/S0025-5718-2014-02792-0/home.html#sthash.rwTIhNWi.dpuf

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We design consistent discontinuous Galerkin finite element schemes for the approximation of a quasi-incompressible two phase flow model of Allen–Cahn/Cahn–Hilliard/Navier–Stokes–Korteweg type which allows for phase transitions. We show that the scheme is mass conservative and monotonically energy dissipative. In this case the dissipation is isolated to discrete equivalents of those effects already causing dissipation on the continuous level, that is, there is no artificial numerical dissipation added into the scheme. In this sense the methods are consistent with the energy dissipation of the continuous PDE system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present and analyse a space–time discontinuous Galerkin method for wave propagation problems. The special feature of the scheme is that it is a Trefftz method, namely that trial and test functions are solution of the partial differential equation to be discretised in each element of the (space–time) mesh. The method considered is a modification of the discontinuous Galerkin schemes of Kretzschmar et al. (2014) and of Monk & Richter (2005). For Maxwell’s equations in one space dimension, we prove stability of the method, quasi-optimality, best approximation estimates for polynomial Trefftz spaces and (fully explicit) error bounds with high order in the meshwidth and in the polynomial degree. The analysis framework also applies to scalar wave problems and Maxwell’s equations in higher space dimensions. Some numerical experiments demonstrate the theoretical results proved and the faster convergence compared to the non-Trefftz version of the scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictive performance evaluation is a fundamental issue in design, development, and deployment of classification systems. As predictive performance evaluation is a multidimensional problem, single scalar summaries such as error rate, although quite convenient due to its simplicity, can seldom evaluate all the aspects that a complete and reliable evaluation must consider. Due to this, various graphical performance evaluation methods are increasingly drawing the attention of machine learning, data mining, and pattern recognition communities. The main advantage of these types of methods resides in their ability to depict the trade-offs between evaluation aspects in a multidimensional space rather than reducing these aspects to an arbitrarily chosen (and often biased) single scalar measure. Furthermore, to appropriately select a suitable graphical method for a given task, it is crucial to identify its strengths and weaknesses. This paper surveys various graphical methods often used for predictive performance evaluation. By presenting these methods in the same framework, we hope this paper may shed some light on deciding which methods are more suitable to use in different situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constrained compartmentalized knapsack problem can be seen as an extension of the constrained knapsack problem. However, the items are grouped into different classes so that the overall knapsack has to be divided into compartments, and each compartment is loaded with items from the same class. Moreover, building a compartment incurs a fixed cost and a fixed loss of the capacity in the original knapsack, and the compartments are lower and upper bounded. The objective is to maximize the total value of the items loaded in the overall knapsack minus the cost of the compartments. This problem has been formulated as an integer non-linear program, and in this paper, we reformulate the non-linear model as an integer linear master problem with a large number of variables. Some heuristics based on the solution of the restricted master problem are investigated. A new and more compact integer linear model is also presented, which can be solved by a branch-and-bound commercial solver that found most of the optimal solutions for the constrained compartmentalized knapsack problem. On the other hand, heuristics provide good solutions with low computational effort. (C) 2011 Elsevier BM. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We design and investigate a sequential discontinuous Galerkin method to approximate two-phase immiscible incompressible flows in heterogeneous porous media with discontinuous capillary pressures. The nonlinear interface conditions are enforced weakly through an adequate design of the penalties on interelement jumps of the pressure and the saturation. An accurate reconstruction of the total velocity is considered in the Raviart-Thomas(-Nedelec) finite element spaces, together with diffusivity-dependent weighted averages to cope with degeneracies in the saturation equation and with media heterogeneities. The proposed method is assessed on one-dimensional test cases exhibiting rough solutions, degeneracies, and capillary barriers. Stable and accurate solutions are obtained without limiters. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the problem of obtaining the weights of the ordered weighted aggregation (OWA) operators from observations. The problem is formulated as a restricted least squares and uniform approximation problems. We take full advantage of the linearity of the problem. In the former case, a well known technique of non-negative least squares is used. In a case of uniform approximation, we employ a recently developed cutting angle method of global optimisation. Both presented methods give results superior to earlier approaches, and do not require complicated nonlinear constructions. Additional restrictions, such as degree of orness of the operator, can be easily introduced

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Least squares polynomial splines are an effective tool for data fitting, but they may fail to preserve essential properties of the underlying function, such as monotonicity or convexity. The shape restrictions are translated into linear inequality conditions on spline coefficients. The basis functions are selected in such a way that these conditions take a simple form, and the problem becomes non-negative least squares problem, for which effecitive and robust methods of solution exist. Multidimensional monotone approximation is achieved by using tensor-product splines with the appropriate restrictions. Additional inter polation conditions can also be introduced. The conversion formulas to traditional B-spline representation are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theory of abstract convexity provides us with the necessary tools for building accurate one-sided approximations of functions. Cutting angle methods have recently emerged as a tool for global optimization of families of abstract convex functions. Their applicability have been subsequently extended to other problems, such as scattered data interpolation. This paper reviews three different applications of cutting angle methods, namely global optimization, generation of nonuniform random variates and multivatiate interpolation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fabric pilling is a serious problem for the apparel industry. Resistance to pilling is normally tested by simulated accelerated wear and manual assessment of degree of pilling based on a visual comparison of the sample to a set of test images. A number of automated systems based on image analysis have been developed. The authors propose new methods of image analysis based on the two-dimensional wavelet transform to objectively measure the pilling intensity in sample images. Initial work employed the detail coefficients of the two-dimensional discrete wavelet transform (2DDWT) as a measure of the pilling intensity of woven/knitted fabrics.

This method is shown to be robust to image translation and brightness variation. Using the approximation coefficients of the 2DDWT, the method is extended to non-woven pilling image sets. Wavelet texture analysis (WTA) combined with principal components analysis are shown to produce a richer texture description of pilling for analysis and classification. Finally, employing the two-dimensional dual-tree complex wavelet transform as the basis for the WTA feature vector is shown to produce good automated classification on a range of standard pilling image sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been recognised that formal methods are useful as a modelling tool in requirements engineering. Specification languages such as Z permit the precise and unambiguous modelling of system properties and behaviour. However some system problems, particularly those drawn from the information systems problem domain, may be difficult to model in crisp or precise terms. It may also be desirable that formal modelling should commence as early as possible, even when our understanding of parts of the problem domain is only approximate. This thesis suggests fuzzy set theory as a possible representation scheme for this imprecision or approximation. A fuzzy logic toolkit that defines the operators, measures and modifiers necessary for the manipulation of fuzzy sets and relations is developed. The toolkit contains a detailed set of laws that demonstrate the properties of the definitions when applied to partial set membership. It also provides a set of laws that establishes an isomorphism between the toolkit notation and that of conventional Z when applied to boolean sets and relations. The thesis also illustrates how the fuzzy logic toolkit can be applied in the problem domains of interest. Several examples are presented and discussed including the representation of imprecise concepts as fuzzy sets and relations, system requirements as a series of linguistically quantified propositions, the modelling of conflict and agreement in terms of fuzzy sets and the partial specification of a fuzzy expert system. The thesis concludes with a consideration of potential areas for future research arising from the work presented here.