989 resultados para Antimicrobial peptide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro activity of the novel antimicrobial peptide dendrimer G3KL was evaluated against 32 Acinetobacter baumannii (including 10 OXA-23, 7 OXA-24, and 11 OXA-58 carbapenemase producers) and 35 Pseudomonas aeruginosa (including 18 VIM and 3 IMP carbapenemase producers) strains and compared to the activities of standard antibiotics. Overall, both species collections showed MIC50/90 values of 8/8 μg/ml and minimum bactericidal concentrations at which 50% or 90% of strains tested are killed (MBC50/90) of 8/8 μg/ml. G3KL is a promising molecule with antibacterial activity against multidrug-resistant and extensively drug-resistant A. baumannii and P. aeruginosa isolates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insects respond to microbial infection by the rapid and transient expression of several genes encoding potent antimicrobial peptides. Herein we demonstrate that this antimicrobial response of Drosophila is not aspecific but can discriminate between various classes of microorganisms. We first observe that the genes encoding antibacterial and antifungal peptides are differentially expressed after injection of distinct microorganisms. More strikingly, Drosophila that are naturally infected by entomopathogenic fungi exhibit an adapted response by producing only peptides with antifungal activities. This response is mediated through the selective activation of the Toll pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buforin II is a 21-aa potent antimicrobial peptide that forms, in a hydrophobic medium, an amphipathic structure consisting of an N-terminal random coil region (residues 1–4), an extended helical region (residues 5–10), a hinge (residue 11), and a C-terminal regular α-helical region (residues 12–21). To elucidate the structural features of buforin II that are required for its potent antimicrobial activity, we synthesized a series of N- and C-terminally truncated or amino acid-substituted synthetic buforin II analogs and examined their antimicrobial activity and mechanism of action. Deletion of the N-terminal random coil region increased the antibacterial activity ≈2-fold, but further N-terminal truncation yielded peptide analogs with progressively decreasing activity. Removal of four amino acids from the C-terminal end of buforin II resulted in a complete loss of antimicrobial activity. The substitution of leucine for the proline hinge decreased significantly the antimicrobial activity. Confocal fluorescence microscopic studies showed that buforin II analogs with a proline hinge penetrated the cell membrane without permeabilization and accumulated in the cytoplasm. However, removal of the proline hinge abrogated the ability of the peptide to enter cells, and buforin II analogs without a proline hinge localized on the cell surface, permeabilizing the cell membrane. In addition, the cell-penetrating efficiency of buforin II and its truncated analogs, which depended on the α-helical content of the peptides, correlated linearly with their antimicrobial potency. Our results demonstrate clearly that the proline hinge is responsible for the cell-penetrating ability of buforin II, and the cell-penetrating efficiency determines the antimicrobial potency of the peptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insects defend themselves against infectious microorganisms by synthesizing potent antimicrobial peptides. Drosophila has appeared in recent years as a favorable model to study this innate host defense. A genetic analysis of the regulation of the antifungal peptide drosomycin has demonstrated a key role for the transmembrane receptor Toll, which prompted the search for mammalian homologs. Two of these, Toll-like receptor (TLR)2 and TLR4, recently were shown to play a critical role in innate immunity against bacteria. Here we describe six additional Toll-related genes (Toll-3 to Toll-8) in Drosophila in addition to 18-wheeler. Two of these genes, Toll-3 and Toll-4, are expressed at a low level. Toll-6, -7, and -8, on the other hand, are expressed at high levels during embryogenesis and molting, suggesting that, like Toll and 18w, they perform developmental functions. Finally, Toll-5 is expressed only in larvae and adults. By using chimeric constructs, we have tested the capacity of the signaling Toll/IL-1R homology domains of these receptors to activate antimicrobial peptide promoters and found that only Toll and Toll-5 can activate the drosomycin promoter in transfected cells, thus demonstrating specificity at the level of the Toll/IL-1R homology domain. In contrast, none of these constructs activated antibacterial peptide promoters, suggesting that Toll-related receptors are not involved in the regulation of antibacterial peptide expression. This result was independently confirmed by the demonstration that a dominant-negative version of the kinase Pelle can block induction of drosomycin by the cytokine Spaetzle, but does not affect induction of the antibacterial peptide attacin by lipopolysaccharide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of a mammalian cyclic antimicrobial peptide, rhesus theta defensin 1 (RTD-1) and its open chain analogue (oRTD-1), on the phase behaviour and structure of model membrane systems (dipalmitoyl phosphatidylcholine, DPPC and dipalmitoyl phosphatidylglycerol, DPPG) were studied. The increased selectivity of RTD-1 for anionic DPPG over zwitterionic DPPC was shown by differential scanning calorimetry. RTD-1, at a molar peptide-lipid ratio of 1:100, induced considerable changes in the phase behaviour of DPPG, but not of DPPC. The main transition temperature, T-m, Was unchanged, but additional phase transitions appeared above T-m. oRTD-1 induced similar effects. However, the effects were not observable below a peptide:lipid molar ratio of 1:50, which correlates with the weaker biological activity of oRTD-1. Small-and wide-angle X-ray scattering revealed for DPPG the appearance of additional structural features induced by RTP-1 above T-m, which were interpreted as correlated lamellar structures, with increased order of the fatty acyl side chains of the lipid. It is proposed that after initial electrostatic interaction of the cationic rim of the peptide with the anionic DPPG headgroups, leading to stabilized lipid-peptide clusters, the hydrophobic face of the peptide assists in its interaction with the fatty acyl side chains eventually leading to membrane disruption. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

sThe structure of a two-chain peptide formed by the treatment of the potent antimicrobial peptide microcin J25 (MccJ25) with thermolysin has been characterized by NMR spectroscopy and mass spectrometry. The native peptide is 21 amino acids in size and has the remarkable structural feature of a ring formed by linkage of the side chain of Glu8 to the N-terminus that is threaded by the C-terminal tail of the peptide. Thermolysin cleaves the peptide at the Phe10-Val11 amide bond, but the threading of the C-terminus through the N-terminal ring is so tight that the resultant two chains remain associated both in the solution and in the gas phases. The three-dimensional structure of the thermolysin-cleaved peptide derived using NMR spectroscopy and simulated annealing calculations has a well-defined core that comprises the N-terminal ring and the threading C-terminal tail. In contrast to the well-defined core, the newly formed termini at residues Phe10 and Val11 are disordered in solution. The C-terminal tail is associated to the ring both by hydrogen bonds stabilizing a short beta-sheet and by hydrophobic interactions. Moreover, unthreading of the tail through the ring is prevented by the bulky side chains of Phe19 and Tyr20, which flank the octapeptide ring. This noncovalent two-peptide complex that has a remarkable stability in solution and in highly denaturing conditions and that survives in the gas phase is the first example of such a two-chain peptide lacking disulfide or interchain covalent bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A yeast cDNA expression library was screened to identify genes and cellular processes that influence fungal sensitivity to a plant antimicrobial peptide. A plasmid-based, GAL1 promoter-driven yeast cDNA expression library was introduced into a yeast genotype susceptible to the antimicrobial peptide MiAMP1 purified from Macadamia integrifolia. Following a screen of 20,000 cDNAs, three yeast cDNAs were identified that reproducibly provided transformants with galactose-dependent resistance to MiAMP1. These cDNAs encoded a protein of unknown function, a component (VMA11) of the vacuolar H+-ATPase and a component (cytochrome c oxidase subunit VIa) of the mitochondrial electron transport chain, respectively. To identify genes that increased sensitivity to MiAMP1, the yeast cDNA expression library was introduced into a yeast mutant with increased resistance to MiAMP1. From 11,000 cDNAs screened, two cDNA clones corresponding to a ser/thr kinase and a ser/thr phosphatase reproducibly increased MiAMP1 susceptibility in the mutant in a galactose-dependent manner. Deletion mutants were available for three of the five genes identified but showed no change in their sensitivity to MiAMP1, indicating that these genes could not be detected by screening of yeast deletion mutant libraries. Yeast cDNA expression library screening therefore provides an alternative approach to gene deletion libraries to identify genes that can influence the sensitivity of fungi to plant antimicrobial peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant antimicrobial peptide MiAMP1 from Macadamia integrifolia and the yeast killer toxin peptide WmKT from Williopsis mrakii are structural homologues. Comparative studies of yeast mutants were performed to test their sensitivity to these two antimicrobial peptides. No differences in susceptibility to MiAMP1 were detected between wild-type and several WmKT-resistant mutant yeast strains. A yeast mutant MT1, resistant to MiAMP1 but unaffected in its susceptibility to plant defensins and hydrogen peroxide, also did not show enhanced tolerance towards WmKT. It is therefore probable that the Greek key beta-barrel structure shared by MiAMP1 and WmKT provides a robust structural framework ensuring stability for the two proteins but that the specific action of the peptides depends on other motifs. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimicrobial peptides and proteins (AMPs) are widespread in the living kingdom. They are key effectors of defense reactions and mediators of competitions between organisms. They are often cationic and amphiphilic, which favors their interactions with the anionic membranes of microorganisms. Several AMP families do not directly alter membrane integrity but rather target conserved components of the bacterial membranes in a process that provides them with potent and specific antimicrobial activities. Thus, lipopolysaccharides (LPS), lipoteichoic acids (LTA) or the peptidoglycan precursor Lipid II are targeted by a broad series of AMPs. Studying the functional diversity of immune effectors tells us about the essential residues involved in AMP mechanism of action. Marine invertebrates have been found to produce a remarkable diversity of AMPs. Molluscan defensins and crustacean anti-LPS factors (ALF) are diverse in terms of amino acid sequence and show contrasted phenotypes in terms of antimicrobial activity. Their activity is directed essentially against Gram-positive or Gram-negative bacteria due their specific interactions with Lipid II or Lipid A, respectively. Through those interesting examples, we discuss here how sequence diversity generated throughout evolution informs us on residues required for essential molecular interaction at the bacterial membranes and subsequent antibacterial activity. Through the analysis of molecular variants having lost antibacterial activity or shaped novel functions, we also discuss the molecular bases of functional divergence in AMPs.