980 resultados para Antibiotics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. © 2013 Informa UK Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungus-growing ants associate with multiple symbiotic microbes, including Actinobacteria for production of antibiotics. The best studied of these bacteria are within the genus Pseudonocardia, which in most fungus-growing ants are conspicuously visible on the external cuticle of workers. However, given that fungus-growing ants in the genus Atta do not carry visible Actinobacteria on their cuticle, it is unclear if this genus engages in the symbiosis with Pseudonocardia. Here we explore whether improving culturing techniques can allow for successful isolation of Pseudonocardia from Atta cephalotes leaf-cutting ants. We obtained Pseudonocardia from 9 of 11 isolation method/colony component combinations from all 5 colonies intensively sampled. The most efficient technique was bead-beating workers in phosphate buffer solution, then plating the suspension on carboxymethylcellulose medium. Placing these strains in a fungus-growing ant-associated Pseudonocardia phylogeny revealed that while some strains grouped with clades of Pseudonocardia associated with other genera of fungus-growing ants, a large portion of the isolates fell into two novel phylogenetic clades previously not identified from this ant-microbe symbiosis. Our findings suggest that Pseudonocardia may be associated with Atta fungus-growing ants, potentially internalized, and that localizing the symbiont and exploring its role is necessary to shed further light on the association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere and to live on artificial surfaces and to resist to the host immune factors and antibiotics. Staphylococcal infections have become increasingly difficult to treat due their antibiotic resistance. Therefore, there is a continuous need for new and effective treatment alternatives against staphylococcal infections. The main goal of this study was to test N-acetylcysteine (NAC) and vancomycin alone and in combination against S. epidermidis and S. aureus biofilms. Methods: Biofilms were treated with NAC at minimum inhibitory concentration (MIC) and 10 × MIC concentrations and vancomycin at MIC and peak serum concentrations. Results: The use of NAC 10 × MIC alone showed a significant antibactericidal effect, promoting a 4-5 log10 CFU/ mL reduction in biofilm cells. The combination of NAC 10 × MIC with vancomycin (independently of the concentration used) reduced significantly the number of biofilm cells for all strains evaluated (5-6 log10). Conclusion: N-acetylcysteine associated to vancomycin can be a potential therapeutic strategy in the treatment of infections associated to biofilms of S. epidermidis or S. aureus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: With the emergence of strains resistant to conventional antibiotics, it is important to carry studies using alternative methods to control these microorganisms causing important infections, such as the use of products of plant origin that has demonstrated effective antimicrobial activity besides biocompatibility. Therefore, this study aimed to evaluate the antimicrobial activity of plant extracts of Equisetum arvense L., Glycyrrhiza glabra L., Punica granatum L. and Stryphnodendron barbatimam Mart. against Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Candida albicans, Candida tropicalis, and Candida glabrata, and to analyze the cytotoxicity of these extracts in cultured murine macrophages (RAW 264.7).Methods: Antimicrobial activity of plant extracts was evaluated by microdilution method based on Clinical and Laboratory Standards Institute (CLSI), M7-A6 and M27-A2 standards. The cytotoxicity of concentrations that eliminated the microorganisms was evaluated by MTT colorimetric method and by quantification of proinflammatory cytokines (IL-1β and TNF-α) using ELISA.Results: In determining the minimum microbicidal concentration, E. arvense L., P. granatum L., and S. barbatimam Mart. extracts at a concentration of 50 mg/mL and G. glabra L. extract at a concentration of 100 mg/mL, were effective against all microorganisms tested. Regarding cell viability, values were 48% for E. arvense L., 76% for P. granatum L, 86% for S. barbatimam Mart. and 79% for G. glabra L. at the same concentrations. About cytokine production after stimulation with the most effective concentrations of the extracts, there was a significant increase of IL-1β in macrophage cultures treated with S. barbatimam Mart. (3.98 pg/mL) and P. granatum L. (7.72 pg/mL) compared to control (2.20 pg/mL) and a significant decrease of TNF-α was observed in cultures treated with G. glabra L. (4.92 pg/mL), S. barbatimam Mart. (0.85 pg/mL), E. arvense L. (0.83 pg/mL), and P. granatum L. (0.00 pg/mL) when compared to control (41.96 pg/mL).Conclusions: All plant extracts were effective against the microorganisms tested. The G. glabra L. extract exhibited least cytotoxicity and the E. arvense L. extract was the most cytotoxic. © 2013 de Oliveira et al.; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mastitis is an important disease for the dairy industry worldwide, causing economic losses and reducing milk quality and production. Staphylococcus aureus is a worldwide agent of this intramammary infection, which also causes foodborne diseases. The objective of this study was to determine the frequency of methicillin-susceptible Staphylococcus aureus (MSSA) isolates in milk of mastitis cows in Brazil and to analyze the genetic lineages and the content of antimicrobial resistance genes and virulence factors among these isolates. Fifty-six MSSA isolates were recovered from 1,484 milk samples (positive for the California mastitis test) of 518 cows from 11 different farms in Brazil (representing 51% of total Staph. aureus obtained), and they were further characterized. Methicillin-susceptible Staphylococcus aureus were isolated from 3.7% of California mastitis test-positive tested milk samples and from 6.2% of tested mastitic cows. Methicillin-susceptible Staphylococcus aureus isolates were characterized by spa typing, agr typing, and multilocus sequence typing, and resistance and virulence traits were investigated by PCR. Seven spa types were identified among MSSA (% of isolates): t127 (44.6), t605 (37.5), t002, t1784, t2066 (1.8), and 2 new ones: t10856 (10.7) and t10852 (1.8). Five distinct sequence types (ST) were detected (% of isolates): ST1 (46.4), ST126 (37.5), ST133 (10.7), ST5 (3.6), and a novel ST registered as ST2493 (1.8). Resistances were detected for streptomycin, chloramphenicol, and tetracycline. One strain contained the chloramphenicol resistance gene (fexA; included within transposon Tn558) and 3 strains contained the tetracycline resistance gene [tet(K)]. Methicillin-susceptible Staphylococcus aureus strains were susceptible to most of the antibiotics studied and lacked the virulence genes of Panton-Valentine leukocidin (lukF/S-PV), toxic shock syndrome toxin 1 (tst), exfoliative toxin A (eta), and exfoliative toxin B (etb), as well as the genes of the immune evasion cluster. Methicillin-susceptible Staphylococcus aureus isolates were detected in a relatively low proportion of cows with mastitis (6.2%) and recovered isolates presented high diversity of genetic lineages, with CC1 and CC126 the predominant clonal complexes, and CC133 also being detected. Larger epidemiological studies with molecular characterization of isolates are required to deepen the knowledge on the circulating genetic lineages among the cow population with mastitis. © 2013 American Dairy Science Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)