953 resultados para Animals, Genetically Modified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

dTwo genetic constructs used to confer improved agronomic characteristics, namely herbicide tolerance (HT) in maize and soyabean and insect resistance (Bt) in maize, are considered in respect of feeding to farm livestock, animal performance and the nutritional value and safety of animal products. A review of nucleic acid (DNA) and protein digestion in farm livestock concludes that the frequency of intact transgenic DNA and proteins of GM and non-GM crops being absorbed is minimal/non existent, although there is some evidence of the presence of short fragments of rubisco DNA of non-GM soya in animal tissues. It has been established that feed processing (especially heat) prior to feeding causes significant disruption of plant DNA. Studies with ruminant and non-ruminant farm livestock offered GM feeds demonstrated that animal performance and product composition are unaffected and that there is no evidence of transgenic DNA or proteins of current GM in the products of animals consuming such feeds. On this evidence, current HT and Bt constructs represent no threat to the health of animals, or humans consuming the products of such animals. However as new GM constructs become available it will be necessary to subject these to rigorous evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine which features of retroviral vector design most critically affect gene expression in hematopoietic cells in vivo, we have constructed a variety of different retroviral vectors which encode the same gene product, human adenosine deaminase (EC 3.5.4.4), and possess the same vector backbone yet differ specifically in transcriptional control sequences suggested by others to be important for gene expression in vivo. Murine bone marrow cells were transduced by each of the recombinant viruses and subsequently used to reconstitute the hematopoietic system of lethally irradiated recipients. Five to seven months after transplantation, analysis of the peripheral blood of animals transplanted with cells transduced by vectors which employ viral long terminal repeats (LTRs) for gene expression indicated that in 83% (77/93) of these animals, the level of human enzyme was equal to or greater than the level of endogenous murine enzyme. Even in bone marrow transplant recipients reconstituted for over 1 year, significant levels of gene expression were observed for each of the vectors in their bone marrow, spleen, macrophages, and B and T lymphocytes. However, derivatives of the parental MFG-ADA vector which possess either a single base mutation (termed B2 mutation) or myeloproliferative sarcoma virus LTRs rather than the Moloney murine leukemia virus LTRs led to significantly improved gene expression in all lineages. These studies indicate that retroviral vectors which employ viral LTRs for the expression of inserted sequences make it possible to obtain high levels of a desired gene product in most hematopoietic cell lineages for close to the lifetime of bone marrow transplant recipients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have examined whether the secretion of erythropoietin (Epo) from genetically modified cells could represent an alternative to repeated injections of the recombinant hormone for treating chronic anemias responsive to Epo. Primary mouse skin fibroblasts were transduced with a retroviral vector in which the murine Epo cDNA is expressed under the control of the murine phosphoglycerate kinase promoter. "Neo-organs" containing the genetically modified fibroblasts embedded into collagen lattices were implanted into the peritoneal cavity of mice. Increased hematocrit (> 80%) and elevated serum Epo concentration (ranging from 60 to 408 milliunits/ml) were observed in recipient animals over a 10-month observation period. Hematocrit values measured in recipient mice varied according to the number of implanted Epo-secreting fibroblasts (ranging from 2.5 to 20 x 10(6)). The implantation of neo-organs containing Epo-secreting fibroblasts appeared, therefore, as a convenient method to achieve permanent in vivo delivery of the hormone. We estimated that the biological efficacy of the approach may be relevant for the treatment of human hemoglobinopathies.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetically modified or engineered foods are produced from rapidly expanding technologies that have sparked international debates and concerns about health and safety. These concerns focus on the potential dangers to human health, the risks of genetic pollution, and the demise of alternative farming techniques as well as biopiracy and economic exploitation by large private corporations. This article discusses the findings of the world's first Royal Commission on Genetic Modification conducted in New Zealand and reveals that there are potential social, ecological and economic risks created by genetically modified foods that require closer criminological scrutiny. As contemporary criminological discourses continue to push new boundaries in areas of crimes of the economy, environmental pollution, risk management, governance and globalization, the potential concerns posed by genetically modified foods creates fertile ground for criminological scholarship and activism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a novel technology for the rapid healing of large osseous and chondral defects, based upon the genetic modification of autologous skeletal muscle and fat grafts. These tissues were selected because they not only possess mesenchymal progenitor cells and scaffolding properties, but also can be biopsied, genetically modified and returned to the patient in a single operative session. First generation adenovirus vector carrying cDNA encoding human bone morphogenetic protein-2 (Ad.BMP-2) was used for gene transfer to biopsies of muscle and fat. To assess bone healing, the genetically modified (“gene activated”) tissues were implanted into 5mm-long critical size, mid-diaphyseal, stabilized defects in the femora of Fischer rats. Unlike control defects, those receiving gene-activated muscle underwent rapid healing, with evidence of radiologic bridging as early as 10 days after implantation and restoration of full mechanical strength by 8 weeks. Histologic analysis suggests that the grafts rapidly differentiated into cartilage, followed by efficient endochondral ossification. Fluorescence in situ hybridization detection of Y-chromosomes following the transfer of male donor muscle into female rats demonstrated that at least some of the osteoblasts of the healed bone were derived from donor muscle. Gene activated fat also healed critical sized defects, but less quickly than muscle and with more variability. Anti-adenovirus antibodies were not detected. Pilot studies in a rabbit osteochondral defect model demonstrated the promise of this technology for healing cartilage defects. Further development of these methods should provide ways to heal bone and cartilage more expeditiously, and at lower cost, than is presently possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consumers of whole foods, such as fruits, demand consistent high quality and seek varieties with enhanced health properties, convenience or novel taste. We have raised the polyphenolic content of apple by genetic engineering of the anthocyanin pathway using the apple transcription factor MYB10. These apples have very high concentrations of foliar, flower and fruit anthocyanins, especially in the fruit peel. Independent lines were examined for impacts on tree growth, photosynthesis and fruit characteristics. Fruit were analysed for changes in metabolite and transcript levels. Fruit were also used in taste trials to study the consumer perception of such a novel apple. No negative taste attributes were associated with the elevated anthocyanins. Modification with this one gene provides near isogenic material and allows us to examine the effects on an established cultivar, with a view to enhancing consumer appeal independently of other fruit qualities. © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Uganda, a significant proportion of the population depends on the micronutrient poor East African highland banana as a food staple. Consequently, micronutrient deficiencies such as vitamin A deficiency are an important health concern in the country. To reach most vulnerable rural poor populations, staple crops can be biofortified with essential micronutrients though conventional breeding or genetic engineering. This thesis provided proof of concept that genetically modified East African highland bananas with enhanced provitamin A levels can be generated and fully characterised in Uganda. In addition, provitamin A levels present in popular banana varieties was documented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic engineering is an attractive method for changing a single characteristic of ‘Smooth Cayenne’ pineapple, without altering its other desirable attributes. Techniques used in pineapple transformation, however, such as tissue culture and biolistic-mediated or Agrobacterium-mediated gene insertion are prone to somaclonal variation, resulting in the production of several morphological mutations (Smith et al., 2002). Fruit mutations can include distortion in fruit shape (round ball, conical, fan-shaped), reduced fruit size, multiple crowns, crownless fruit, fruitless crowns, and spiny crown leaves (Dalldorf, 1975; Sanewski et al., 1992). The present paper describes the variability in fruit-shape mutations between transgenic and non-transgenic fruit, and its subsequent impact on organoleptic characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature dependences of the reduction potentials (Eo') of wildtype human myoglobin (Mb) and three site-directed mutants have been measured by using thin-layer spectroelectrochemistry. Residue Val68, which is in van der Waals contact with the heme in Mb, has been replaced by Glu, Asp, and Asn. At pH 7.0, reduction of the heme iron (III) in the former two proteins is accompanied by uptake of a proton by the protein. The changes in Eo', and the standard entropy (ΔSo') and enthalpy (ΔHo') of reduction in the mutant proteins were determined relative to values for wild-type; the change in Eo' at 25°C was about -200 millivolts for the Glu and Asp mutants, and about -80 millivolts for the Asn mutant. Reduction of Fe(III) to Fe(II) in the Glu and Asp mutants is accompanied by uptake of a proton. These studies demonstrate that Mb can tolerate substitution of a buried hydrophobic group by potentially charged and polar residues, and that such amino acid replacements can lead to substantial changes in the redox thermodynamics of the protein.

Through analysis of the temperature dependence and shapes of NMR dispersion signals, it is determined that a water molecule is bound to the sixth coordination site of the ferric heme in the Val68Asp and in the Val68Asn recombinant proteins while the carboxyl group of the sidechain of Glu68 occupies this position in Val68Glu. The relative rhombic distortions in the ESR spectra of these mutant proteins combined with H217O and spin interconversion experiments performed on them confirm the conclusions of the NMRD study.

The rates of intramolecular electron transfer (ET) of (NH3)5Ru-His48 (Val68Asp, His81GIn, Cys110AIa)Mb and (NH3)5Ru-His48 (Val68GIu,His81GIn,Cys110Ala)Mb were measured to be .85(3)s-1 and .30(2)s-1, respectively. This data supports the hypothesis that entropy of 111 reduction and reorganization energy of ET are inversely related. The rates of forward and reverse ET for (NH3)5 Ru-His48 (Val68GIu, His81 GIn, Cys110AIa)ZnMb -7.2(5)•104s-1and 1.4(2)•105s-1, respectively- demonstrate that the placement of a highly polar residue nearby does not significantly change the reorganization energy of the photoactive Zn porphyrin.

The distal histidine imidazoles of (NH3)4isnRu-His48 SWMb and (NH3)5Ru-His48 SWMb were cyanated with BrCN. The intramolecular ET rates of these BrCN-modified Mb derivatives are 5.5(6)s-1 and 3.2(5)s-1, respectively. These respective rates are 20 and 10 times faster than those of their noncyanated counterparts after the differences in ET rate from driving force are scaled according to the Marcus equation. This increase in ET rate of the cyanated Mb derivatives is attributed to lower reorganization energy since the cyanated Mb heme is pentacoordinate in both oxidation states; whereas, the native Mb heme loses a water molecule upon reduction so that it changes from six to five coordinate. The reorganization energy from Fe-OH2 dissociation is estimated to be .2eV. This conclusion is used to reconcile data from previous experiments in our lab. ET in photoactive porphyrin-substituted myoglobins proceed faster than predicted by Marcus Theory when it is assumed that the only difference in ET parameters between photoactive porphyrins and native heme systems is driving force. However, the data can be consistently fit to Marcus Theory if one corrects for the smaller reorganization in the photoactive porphyrin systems since they do not undergo a coordination change upon ET.

Finally, the intramolecular ET rate of (NH3)4isnRu-His48 SWMb was measured to be 3.0(4)s-1. This rate is within experimental error of that for (NH3)4pyrRu-His48 SWMb even though the former has 80mV more driving force. One likely possibility for this observation is that the tetraamminepyridineruthenium group undergoes less reorganization upon ET than the tetraammineisonicotinamideruthenium group. Moreover, analysis of the (NH3)4isnRu-His48 SWMb experimental system gives a likely explanation of why ET was not observed previously in (NH3)4isnRu-Cytochrome C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessment and management of risk is needed for sustainable use of genetically modified aquatic organisms (aquatic GMOs). A computer software package for safely conducting research with genetically modified fish and shellfish is described. By answering a series of questions about the organism and the accessible aquatic ecosystem, a researcher or oversight authority can either identify specific risks or conclude that there is a specific reason for safety of the experiment. Risk assessment protocols with examples involving transgenic coho salmon, triploid grass carp and hybrid tilapia are described. In case a specific risk is identified, the user is led to consider risk management measures, involving culture methods, facilities design and operations management, to minimize the risk. Key features of the software are its user-friendly organization; easy access to explanatory text, literature citations and glossary; and automated completion of a worksheet. Documented completion of the Performance Standards can facilitate approval of a well designed experiment by oversight authorities.