959 resultados para Angiotensin II


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Intracerebroventricular (I.C.V.) infusion (60 ng h-1) of Isoleu5-angiotensin II (Isoleu5-AngII) and des-amine-angiotensin II (des-amine-AngII) in rats caused increased drinking behaviour and an increase in arterial blood pressure.2. Des-amine-AngII caused similar increases in heart rate and arterial blood pressure as AngII.3. Previous I.C.V. injection of the antagonists [Leu8]-AngII, des-amine-[Leu8]-AngII and octanoyl-[Leu8]-AngII prevented the increases in heart rate and blood pressure produced by I.C.V. infusion of AngII and caused partial reduction of the dipsogenic response.4. The three antagonists had no effect on the increase in arterial blood pressure and heart rate caused by des-amine-AngII. The drinking response was reduced by previous injection of [Leu8]-AngII and des-amine-[Leu8]-AngII but not by octanoyl-[Leu8]-AngII.5. In conclusion, Isoleu5-AngII and des-amine-AngII increase drinking behaviour, arterial blood pressure and heart rate when infused into the cerebral ventricle of rats. The study with the antagonists showed that des-amine-AngII probably binds more strongly to AngII-receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effect of losartan (DUP-753) on the dipsogenic responses produced by intracerebroventricular (icv) injection of noradrenaline (40 nmol/mu l) and angiotensin II (ANG II) (2 ng/mu l) in male Holtzman rats weighing 250-300 g. The effect of DUP-753 was also studied in animals submitted to water deprivation for 30 h. After control injections of isotonic saline (0.15 M NaCl, 1 mu l) into the lateral ventricle (LV) the water intake was 0.2 +/- 0.01 ml/h. DUP-753 (50 nmol/mu l) when injected alone into the LV of satiated animals had no significant effect on drinking (0.4 +/- 0.02 ml/h) (N = 8). DUP-753 (50 nmol/mu l) injected into the LV prior to noradrenaline reduced the water intake from 2.4 +/- 0.8 to 0.8 +/- 0.2 ml/h (N = 8). The water intake induced by injection of ANG II and water deprivation was also reduced from 9.2 +/- 1.4 and 12.7 +/- 1.4 ml/h to 0.8 +/- 0.2 and 1.7 +/- 0.3 ml/h (N = 6 and N = 8), respectively. These data indicate a correlation between noradrenergic pathways and angiotensinergic receptors and lead us to conclude that noradrenaline-induced water intake may be due to the release of ANG II by the brain. The finding that water intake was reduced by DUP-753 in water-deprived animals suggests that dehydration releases ANG II, and that AT(1) receptors of the brain play an important role in the regulation of water intake induced by deprivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present experiments were conducted to investigate the role of the alpha (1A)-, alpha (1B), beta (1),- and beta (2)-adrenoceptors of the lateral hypothalamus (LH) on the water and salt intake responses elicited by subfornical organ (SFO) injection of angiotensin II (ANG II) in rats. 5-methylurapidil (an alpha (1A)-adrenergic antagonist), cyclazosin (an alpha (1B)-adrenergic antagonist) and ICI-118,551 (a beta (2)-adrenergic antagonist) injected into the LH produced a dose-dependent reduction, whereas efaroxan (an alpha (2)-antagonist) increased the water intake induced by administration of ANG II into the SFO. These data show that injection of 5-methylurapidil into the LH prior to ANG II into the SFO increased the water and sodium intake induced by the injection of ANG II. The present data also show that atenolol (a beta (1)-adrenergic antagonist), ICI-118,551, cyclazosin, or efaroxan injected into the LH reduced in a dose-dependent manner the water and sodium intake to angiotensinergic activation of SFO. Thus, the alpha (1)- and beta -adrenoceptors of the LH are possibly involved with central mechanisms dependent on ANG II and SFO that control water and sodium intake. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Angiotensin (Ang)II is involved in responses to hypovolaemia, such as sodium appetite and increase in blood pressure, Target areas subserving these responses for AngII include the cardiovascular system in the periphery and the circumventricular organs in the brain.2. Conflicting data have been reported for the role of systemic versus brain AngII in the mediation of sodium appetite.3. The role for systemic AngII and systemic AngII receptors in the control of blood pressure in hypovolaemia is well established. In contrast with systemic injections, i.c.v injections of AngII non-peptide AT(1) and AT(2) receptor antagonists, such as losartan and PD123319, do not reduce arterial pressure in sodium-depleted (furosemide injection plus removal of ambient sodium for 24 h) rats. Thus, brain AngII receptors are likely not important for cardiovascular responses to hypovolaemia induced by sodium depletion.4. Intracerebroventricular injections of losartan or PD 123319 increase arterial pressure when injected at relatively high doses. This hypertensive effect is unlikely to be an agonist effect on brain AngII receptors, Increases in arterial pressure produced by i.c.v, losartan are attenuated by lesions of the tissue surrounding the anterior third ventricle (AV3V). The hypertensive effect of i.c.v, AngII is abolished by lesions of the AV3V.5. Hypertension induced by AngII receptor antagonists is consistent with hypotension induced by AngII acting in the brain, However, the full physiological significance of this hypotensive effect mediated by brain AngII receptors remains to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subfornical organ (SFO) and the lateral hypothalamus (LH) have been shown to be important for the central action of angiotensin II (ANG II) on water and salt regulation. Several anatomical findings have demonstrated neural connections between the SFO and the LH. The present experiments were conducted to investigate the role of the α-adrenergic antagonists and agonists injected into the LH on the water and salt intake elicited by injections of ANG II into the SFO. Prazosin (an α1-adrenergic antagonist) injected into the LH increased the salt ingestion, whereas yohimbine (an α2-adrenergic antagonist) and propranolol (a β-adrenergic antagonist) antagonized the salt ingestion induced by administration of ANG II into the SFO. Previous administration of clonidine (an α2-adrenergic agonist) or noradrenaline into the LH increased, whereas pretreatment with phenylephrine decreased the sodium intake induced by injection of ANG II into the SFO. Previous treatment with prazosin and propranolol reduced the water intake induced by ANG II. Phenylephrine increased the dipsogenic responses produced by ANG II, whereas previous treatment with clonidine injected into the LH reduced the water intake induced by ANG II administration into the SFO. The LH involvement with SFO on the excitatory and inhibitory mechanisms related to water and sodium intake is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the effects of losartan and CGP42112A (selective ligands of the AT1 and AT2 angiotensin receptors, respectively) and salarasin (a relatively nonselective angiotensin receptor antagonist) on urinary volume and urinary sodium and potassium excretion induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of conscious rats. Both the AT1 and AT2 ligands and salarasin administered in the presence of ANG II elicited a concentration-dependent inhibition of urine excretion, but losartan inhibited only 75% of this response. The IC50 for salarasin, CGP42112A, and losartan was 0.01, 0.05, and 6 nM, respectively. Previous treatment with saralasin, CGP42112A and losartan competitively antagonized the natriuretic responses to PVN administration of ANG II, and the IC50 values were 0.09, 0.48, and 10 nM, respectively. The maximum response to losartan was 65% of that obtained with saralasin. Pretreatment with saralasin, losartan, and CGP42112A injected into the PVN caused shifts to the right of the concentration-response curves, but the losartan concentrations were disproportionately greater compared with salarasin or CGP42112A. The IC50 values were 0.06, 0.5, and 7.0 for salarasin, CGP42112A, and losartan, respectively. These results suggest that both AT1 and AT2 receptor subtypes in the PVN are involved in ANG II-related urine, sodium, and potassium excretion, and that the inhibitory responses to AT2 blockade are predominant. Copyright (C) 1999 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective - We determined the effects of losartan and PD 123319 (antagonists of the AT1 and AT2 angiotensin receptors, respectively), and [Sar1, Ala8] ANG II (a relatively peptide antagonist of angiotensin receptors) injected into the paraventricular nucleus (PVN) on water and 3% NaCl intake, and the diuretic, natriuretic, and pressor effects induced by administration of angiotensin II (ANG II) into the medial septal area (MSA) of conscious rats. Methods - Holtzman rats were used. Animals were anesthetized with tribromoethanol (20 mg) per 100 grams of body weight, ip. A stainless steel guide cannula was implanted into the MSA and PVN. All drugs were injected in 0.5-μl volumes for 10-15 seconds. Seven days after brain surgery, water and 3% NaCl intake, urine and sodium excretion, and arterial blood pressure were measured. Results - Losartan (40 nmol) and [Sar1, Ala8] ANG II (40 nmol) completely eliminated whereas PD 123319 (40 nmol) partially blocked the increase in water and sodium intake and the increase in arterial blood pressure induced by ANG II (10 nmol) injected into the MSA. The PVN administration of PD 123319 and [Sar1, Ala8] ANG II blocked whereas losartan attenuated the diuresis and natriuresis induced by MSA administration of ANG II. Conclusion - MSA involvement with PVN on water and sodium homeostasis and arterial pressure modulation utilizing ANGII receptors is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-Terminally and internally labeled analogues of the hormones angiotensin (AII, DRVYIHPF) and bradykinin (BK, RPPGFSPFR) were synthesized containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4- carboxylic acid (TOAC). TOAC replaced Asp 1 (TOAC 1-AII) and Val 3 (TOAC 3-AII) in AII and was inserted prior to Arg 1 (TOAC 0-BK) and replacing Pro 3 (TOAC 3-BK) in BK. The peptide conformational properties were examined as a function of trifluoroethanol (TFE) content and pH. Electron paramagnetic resonance spectra were sensitive to both variables and showed that internally labeled analogues yielded rotational correlation times (TC) considerably larger than N-terminally labeled ones, evincing the greater freedom of motion of the N-terminus. In TFE, τ C increased due to viscosity effects. Calculation of τ Cpeptide/τ CTOAC ratios indicated that the peptides acquired more folded conformations. Circular dichroism spectra showed that, except for TOAC 1-AII in TFE, the N-terminally labeled analogues displayed a conformational behavior similar to that of the parent peptides. In contrast, under all conditions, the TOAC 3 derivatives acquired more restricted conformations. Fluorescence spectra of All and its derivatives were especially sensitive to the ionization of Tyr 4. Fluorescence quenching by the nitroxide moiety was much more pronounced for TOAC 3-AII The conformational behavior of the TOAC derivatives bears excellent correlation with their biological activity, since, while the N-terminally labeled peptides were partially active, their internally labeled counterparts were inactive [Nakaie, C. R., et al., Peptides 2002, 23, 65-70]. The data demonstrate that insertion of TOAC in the middle of the peptide chain induces conformational restrictions that lead to loss of backbone flexibility, not allowing the peptides to acquire their receptor-bound conformation. © 2004 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the central role of angiotensin II and nitric oxide on arterial blood pressure (MAP) in rats. Losartan and PD123349 AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), as well as FK 409 (a nitric oxide donor), N W-nitro-L-arginine methyl ester (L-NAME) a constituve nitric oxide synthase inhibitor endothelial (eNOSI) and 7-nitroindazol (7NI) a specific neuronal nitric oxide synthase inhibitor (nNOSI) were used. Holtzman strain, (Rattus norvergicus) weighting 200-250 g were anesthetized with zoletil 50 mg kg -1 (tiletamine chloridrate 125 mg and zolazepan chloridrate 125 mg) into quadriceps muscle anda stainless steel cannula was stereotaxically implanted into their Lateral Ventricle (LV). Controls were injected with a 0.5 μl volume of 0.15 M NaCl. Angiotensin II injected into LV increased MAP (19±3 vs. control 3±1 mm Hg), which is potentiated by prior injection of L-NAME in the same site 26±2 mm Hg. 7NI injected prior to ANG II into LV also potentiated the pressor effect of ANG II but with a higher intensity than L-NAME 32±3 mm Hg. FK 409 inhibited the pressor effect of ANG II (6±1 mm Hg). Losartan injected into LV before ANG II influences the pressor effect of ANG II (8±1 mm Hg). The PD 123319 decreased the pressor effects of ANG II (16±1 mm Hg). Losartan injected simultaneously with FK 409 blocked the pressor effect of ANG II (3±1 mm Hg). L-NAME produced an increase in the pressor effect of ANG II, may be due to local vasoconstriction and all at once by neuronal NOS inhibition but the main effect is of the 7-NIT an specific nNOS inhibitor. The AT 1 antagonist receptors improve basal nitric oxide (NO) production and release. These data suggest the involvement of constitutive and neuronal NOS in the control of arterial blood pressure induced by ANG II centrally, evolving AT 1 receptor-mediated vasoconstriction and AT 2 receptor-mediated vasodilatation. These results were confirmed by the experiment using FK 409. © 2006 Asian Network for Scientific Information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effects of angiotensin receptors antagonists, arginine vasopressin receptor antagonist, L-arginine and L-NAME, injected into supraoptic nucleus of the hypothalamus (SON) on sodium intake induced by the injection of angiotensin II (ANGII). Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. Sodium intake after injection of saline SAL+SAL 0.15 M NaCl was 0.10±00.1 mL 2 h -1; SAL+ANGII injected into SON increased sodium intake. Losartan injected prior to ANGII into SON decreased sodium intake induced by ANGII. PD123319 injected prior to ANGII produced no changes in sodium intake induced by ANGII. AVPA receptor V 1 antagonist injected prior to ANGII reduced sodium intake with a less intensity than losartan. L-arginine injected prior to ANGII decreases sodium intake at a same intensity than losartan. L-NAME injected prior to ANGII potentiated sodium intake induced by ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the natriorexigenic effect of ANGII. These results confirm the importance of SON in the control of sodium intake. Also suggest that both AT 1 and arginine vasopressin V 1 receptors interact with nitrergic pathways within the SON influencing the sodium metabolism by changing sodium appetite induced by ANGII. © 2007 Asian Network for Scientific Information.