959 resultados para Angiotensin II


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term effects of angiotensin II (Ang II) on vacuolar H(+)-ATPase were studied in a SV40-transformed cell line derived from rat proximal tubules (IRPTC). Using pH(i) measurements with the fluorescent dye BCECF, the hormone increased Na(+)-independent pH recovery rate from an NH(4)Cl pulse from 0.066 +/- 0.014 pH U/min (n = 7) to 0.14 +/- 0.021 pH U/min (n = 13; p < 0.05) in 10 h Ang II (10(-9) M)-treated cells. The increased activity of H(+)-ATPase did not involve changes in mRNA or protein abundance of the B2 subunit but increased cell surface expression of the V-ATPase. Inhibition of tyrosine kinase by genistein blocked Ang II-dependent stimulation of H(+)-ATPase. Inhibition of phosphatidylinositol-3-kinase (PI3K) by wortmannin and of p38 mitogen-activated protein kinase (MAPK) by SB 203580 also blocked this effect. Thus, long-term exposure of IRPTC cells to Ang II causes upregulation of H(+)-ATPase activity due, at least in part, to increased B2 cell surface expression. This regulatory pathway is dependent on mechanisms involving tyrosine kinase, p38 MAPK, and PI3K activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin II (Ang II) controls blood pressure, electrolyte balance, cell growth and vascular remodeling. Ang II activates NAD(P)H oxidase in several tissues with important function in the control of insulin secretion. Considering the concomitant occurrence of hypertension, insulin resistance and pancreatic B cell secretion impairment in the development of type II diabetes the aim of the present study was to evaluate the effect of ANG II on NAD(P)H oxidase activation in isolated pancreatic islets. We found that ANGII-induced superoxide generation via NAD(P)H oxidase activation and increased protein and mRNA levels of NAD(P)H oxidase subunits (p47(PHOX) and gp91(PHOX)). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of ANG II on intracellular pH (pH(i)) recovery rate and AT(1) receptor translocation was investigated in transfected MDCK cells. The pHi recovery rate was evaluated by fluorescence microscopy using the fluorescent probe BCECF-AM. The human angiotensin II receptor isoform 1 (hAT(1)) translocation was analyzed by immunofluorescence and confocal microscope. Our data show that transfected cells in control situation have a pHi recovery rate of 0.219 +/- 0.017 pH U/min (n = 11). This value was similar to nontransfected cells [0.211 +/- 0.009 pH U/min (n = 12)]. Both values were significantly increased with ANG II (10(-9) M) but not with ANG II (10(-6) M). Losartan (10(-7) M) and dimethyl-BAPTA-AM (10(-7) M) decreased significantly the stimulatory effect of ANG II (10(-9) M) and induced an increase in Na+/H+ exchanger 1 (NHE-1) activity with ANG II (10(-6) M). Immunofluorescence studies indicated that in control situation, the hAT(1) receptor was predominantly expressed in cytosol. However, it was translocated to plasma membrane with ANG II (10(-9) M) and internalized with ANG II (10(-6) M). Losartan (10(-7) M) induced hAT(1) translocation to plasma membrane in all studied groups. Dimethyl-BAPTA-AM (10(-7) M) did not change the effect of ANG II (10(-9) M) on the hAT(1) receptor distribution but induced its accumulation at plasma membrane in cells treated with ANG II (10(-6) M). With ionomycin (10(-6) M), the receptor was accumulated in cytosol. The results indicate that, in MDCK cells, the effect of ANG II on NHE-1 activity is associated with ligand binding to AT(1) receptor and intracellular signaling events related to AT(1) translocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the effect of Angiotensin II (Ang II) on the interaction between the Ca(2+)/CaM complex and hNHE1. Considering that calmodulin binds to NHE1 at two sites (A and B), amino acids at both sites were modified and two mutants were constructed: SA(1K3R/4E) and SB(1K3R/4E). Wild type and mutants were transfected into PS120 cells and their activity was examined by H(+) flux (J(H+)). The basal J(H+) of wild type was 4.71 +/- 0.57 (mM/min), and it was similar in both mutants. However, the mutations partially impaired the binding of CaM to hNHE1. Ang II (10(-12) and 10(-9) M) increased the J(H+) in wild type and SB. Ang II (10(-6) M) increased this parameter only in SA. Ang II (10(-9) M) maintained the expression of calmodulin in wild type or mutants, and Ang II (10(-6) M) decreased it in wild type or SA, but not in SB. Dimethyl-Bapta-AM (10(-7) M), a calcium chelator, suppressed the effect of Ang II (10(-9) M) in wild type. With Ang II (10(-6) M), Bapta failed to affect wild type or SA, but it increased the J(H+) in SB. W13 or calmidazolium chloride (10(-5) M), two distinct calmodulin inhibitors, decreased the effect of Ang II (10(-9) M) in wild type or SB. With Ang II (10(-6) M), W13 or calmidazolium chloride decreased the J(H+) in wild type or SA and increased it in SB. Thus, with Ang II (10(-12) and 10(-9) M), site A seems to be responsible for the stimulation of hNHE1 and with Ang II (10(-6) M), site B is important to maintain its basal activity. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin II (Ang II) exerts an acute bimodal effect on proximal tubule NHE3: while low doses stimulate the exchanger, high doses inhibit it. In the present study, we have investigated the chronic effects of Ang II on NHE3 expression and transcriptional regulation. Treatment of a tubular epithelial cell line, OKP, with Ang II 10(-11) M significantly increased NHE protein expression and mRNA levels, without evidence of bimodal effect. No change in mRNA half-life was detected, but transient transfection studies showed a significant increase in NHE3 promoter activity. Binding sites for Sp1/Egr-1 and AP2 transcription factors of the NHE3 proximal promoter were mutated and we observed that the Sp1/Egr-1 binding site integrity is necessary for Ang II stimulatory effects. Inhibition of cytochrome P450, PI3K, PKA and MAPK pathways prevented the Ang II stimulatory effect on the NHE3 promoter activity. Taking all the results together, our data reveal that chronic Ang II treatment exerts a stimulatory effect on NHE3 expression and promoter activity. The Ang II up-regulation of the NHE3 promoter activity appears to involve the Sp1/Egr-1 binding site and the interplay of several intracellular signaling pathways. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The signalling pathway CD40/CD40L (CD40 ligand) plays an important role in atherosclerotic plaque formation and rupture. AngII (angiotensin II), which induces oxidative stress and inflammation, is also implicated in the progression of atherosclerosis. In the present study, we tested the hypothesis that AngII increases CD40/CD40L activity in vascular cells and that ROS (reactive oxygen species) are part of the signalling cascade that controls CD40/CD40L expression. Human CASMCs (coronary artery smooth muscle cells) in culture exposed to IL (interleukin)-1 beta or TNF-alpha (tumour necrosis factor-a) had increased superoxide generation and enhanced CD40 expression, detected by EPR (electron paramagnetic resonance) and immunoblotting respectively. Both phenomena were abolished by previous incubation with membrane-permeant antioxidants or cell transfection with P22(phox) antisense. AngII (50-200 nmol/l) induced an early and sustained increase in CD40 mRNA and protein expression in CASMCs, which was blocked by treatment with antioxidants. Increased CD40 expression led to enhanced activity of the pathway, as AngII-treated cells stimulated with recombinant CD40L released higher amounts of IL-8 and had increased COX-2 (cyclo-oxygenase-2) expression. We conclude that AngII stimulation of vascular cells leads to a ROS-dependent increase in CD40/CD40L signalling pathway activity. This phenomenon may be an important mechanism modulating the arterial injury observed in atherosclerosis-related vasculopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between angiotensin II (AII, DRVYIHPF) and its analogs carrying 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) and detergents-negatively charged sodium dodecyl sulfate (SDS) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS)-was examined by means of EPR, CD, and fluorescence. EPR spectra of partially active TOAC(1)-AII and inactive TOAC(3)-AII in aqueous solution indicated fast tumbling, the freedom of motion being greater at the N-terminus. Line broadening occurred upon interaction with micelles. Below SDS critical micelle concentration, broader lines indicated complex formation with tighter molecular packing than in micelles. Small changes in hyperfine splittings evinced TOAC location at the micelle-water interface. The interaction with anionic micelles was more effective than with zwitterionic micelles. Peptide-micelle interaction caused fluorescence increase. The TOAC-promoted intramolecular fluorescence quenching was more, pronounced for TOAC(3)-AII because of the proximity between the nitroxide and Tyr(4). CD spectra showed that although both AII and TOAC(1)-AII presented flexible conformations in water, TOAC(3)-AII displayed conformational restriction because of the TOAC-imposed bend (Schreier et al., Biopolymers 2004, 74, 389). In HPS, conformational changes were observed for the labeled peptides at neutral and basic pH. In SDS, all peptides underwent pH-dependent conformational changes. Although the spectra suggested similar folds for All and TOAC(1)-AII, different conformations were acquired by TOAC(3)-AII. The membrane environment has been hypothesized to shift conformational equilibria so as to stabilize the receptor-bound conformation of ligands. The fact that TOAC(3)-AII is unable to acquire conformations similar to those of native AII and partially active TOAC(1)-AII is probably the explanation for its lack of biological activity. (C) 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 525-537, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction
Angiotensin II (Ang II) is known to induce cardiac growth and modulate myocardial contractility. It has been reported that elevated levels of endogenous Ang II contribute to the development of cardiac hypertrophy in hypertensives. However, the long-term functional effects of cardiac exposure to Ang II in normotensives is unclear.

A recently developed transgenic mouse (TG1306/1R), in which cardiac-specific overproduction of Ang II produces primary hypertrophy, provides a new experimental model for investigation of this phenotype. The aim of the present study was to use this model to investigate whether there is a functional deficit in primary hypertrophy that may predispose to cardiac failure and sudden death. We hypothesised that primary cardiac hypertrophy is associated with mechanical dysfunction in the basal state.

Methods
Normotensive heterozygous TG1306/1R mice harbouring multiple copies of a cardiac-specific rat angiotensinogen gene were studied at age 30—40 weeks and compared with age-matched wild-type littermates. Left ventricular function was measured ex vivo in bicarbonate buffer-perfused, Langendorffmounted hearts ( at a perfusion pressure of 80 mmHg, 37°C) using a fluid-filled PVC balloon interfaced to a pressure transducer and digital data acquisition system.

Results
There was no difference in the mean (±SEM) intrinsic heart rate of TG1306/1R and wild-type control mice (357.4±11.8 vs. 367.5±20.9 bpm, n=9 & 7). Under standardised end-diastolic pressure conditions, TG1306/1R hearts exhibited a significant reduction in peak developed pressure (132.2±9.4 vs. 161.5±3.1 mmHg, n=9 & 7, p<0.05) and maximum rate of pressure development (3566.7±323.7 vs. 4486.3±109.4 mmHg, n=9 & 7, p<0.05). TG1306/1R mice show a significant correlation between incidence of arrhythmia and increasing heart size (Spearman's correlation coefficient 0.61).

Conclusion
These data demonstrate that chronic in vivo exposure to elevated levels of intra-cardiac Ang II is associated with significant contractile abnormalities evident in the ex vivo intact heart. Our findings suggest that endogenous overproduction of cardiac Ang II, independent of changes in blood pressure, is sufficient to induce ventricular remodelling that culminates in impaired cardiac function which may precede failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hypertrophic Heart Rat (HHR) displays spontaneous cardiomyocyte hypertrophy in association with an apparent reduction in myocyte number in adulthood. This suggests the possibility of reduced hyperplasia or increased apoptosis during early cardiac development. The angiotensin AT1 and AT2 receptor subtypes have been implicated in both cellular growth and apoptosis, but the precise mechanisms are unclear. The aim of this study was to determine the relationship between cardiac AngII receptor expression levels and neonatal cardiomyocyte growth and apoptotic responses in the HHR compared with the Normal Heart Rat (NHR) control strain. Cardiac tissues were freshly harvested from male HHR and NHR at several developmental stages (p2 and 4, 6, 8, 12wks). HHR cardiac weight indices were considerably smaller than NHR at day 2 (4.330.19 vs 5.010.08 mg/g), but ‘caught-up’ to NHR by 4 weeks (5.100.15 vs 5.160.11 mg/g). By 12 weeks, HHR hearts were 27% larger than NHR. Tissue AT1A and AT2 mRNA expression levels were quantified by real-time RT-PCR. Relative to NHR, HHR neonatal hearts exhibited a 4.6-fold higher AT2/AT1 mRNA expression ratio. Cultured neonatal cardiomyocytes were infected with AT1A and/or AT2 receptor-expressing adenoviruses to achieve a physiological level of receptor expression (150 fmol receptor protein/mg total cell protein). In addition, to emulate receptor expression in neonatal HHR hearts, cells were co-infected with AT1A and AT2 receptors at a 4:1 ratio. Apoptosis incidence was studied by morphological analysis after 72 hours exposure to 0.1 M AngII. When infected with the AT1A receptor alone, a higher proportion of HHR myocytes appeared apoptotic than NHR (22.7 4.1% vs 1.1 0.6%, P 0.001). This implies that intrinsic differences predispose HHR cells to accentuated AT1-mediated apoptosis. Interestingly, the bax-1/bcl-2 mRNA expression ratio was significantly higher (50%) in HHR neonatal hearts. When cells were co-infected with AT1A and AT2 receptors, evidence of apoptosis in HHR cells virtually disappeared (0.4 0.1%). These findings suggest a novel capacity of AT2 receptors to counteract accentuated AT1A receptor-induced apoptosis in the HHR in early cardiac growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction/hypothesis
Cardiac hypertrophy is an independent risk factor predictive of cardiovascular disease and is significantly associated with morbidity and mortality. The mechanism by which angiotensin II (Ang II) and dietary sodium exert additive effects on the development of cardiac hypertrophy is unclear. The goal of this study was to evaluate the hypothesis that, where there is a genetic predisposition to Ang II-dependent hypertrophy, there is also an increased susceptibility to sodium-induced hypertrophy mediated by AT1-receptor expression.

Methods
Diets of low sodium (LS, 0.3% w:w) and high sodium (HS, 4.0% w:w) content were fed to adult (age 25 weeks) control wild-type mice (WT) and to weeks) control wild-type mice (WT) and to transgenic mice exhibiting cardiac specific overexpression of angiotensinogen (TG). At the conclusion of a 40-day dietary treatment period, cardiac tissue weights were compared and the relative expression levels of Ang II receptor subtypes (AT1A and AT2) were evaluated using RT-PCR.

Results
WT and TG mice fed HS and LS diets maintained comparable weight gains during the treatment period. The normalised heart weights of TG mice were elevated compared to WT, and the extent of the increase was greater for mice maintained on the HS diet treatments (WT 12% vs. TG 41% increase in cardiac weight index). While a similar pattern of growth was observed for ventricular tissues, the atrial weight parameters demonstrated an additional significant effect of dietary sodium intake on tissue weight, independent of animal genetic type. No differences in the relative (GAPDH normalised) expression levels of AT1A- and AT2-receptor mRNA were observed between diet or animal genetic groups.

Conclusion
This study demonstrates that, where there is a pre-existing genetic condition of Ang II-dependent cardiac hypertrophy, the pro-growth effect of elevated dietary sodium intake is selectively augmented. In TG and WT mice, this effect was evident with a relatively short dietary treatment intervention (40 days). Evaluation of the levels of Ang II receptor mRNA further demonstrated that this differential growth response was not associated with an altered relative expression of either AT1A- or AT2-receptor subtypes. The cellular mechanistic bases for this specific Ang II-dietary sodium interaction remain to be elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identical degrees of renal artery stenosis were induced in 5 dogs on two separate occasions; once during continuous inhibition of angiotensin I converting enzyme with enalapril, and once with the dogs untreated. Arterial pressure rose about 25 mm Hg during 3 days of stenosis in untreated dogs, due to increased total peripheral resistance. When the dogs were treated with enalapril, blood pressure had risen 14.5 ± 3.4 mm Hg 24 hours after stenosis due to a 35% increase in cardiac output while total peripheral resistance fell by 16%. By the third day, blood pressure had returned to pre-stenosis levels, cardiac output was close to normal and total peripheral resistance had increased. The stenosis on the renal artery increased the resistance to blood flow of the kidneys in both untreated and enalapril treated dogs. This increase in kidney resistance in the untreated dogs accounted for about 30% of the change in total peripheral resistance. In the enalapril treated dogs, the increased kidney resistance helped offset the vasodilatation in the rest of the vasculature. These results suggest that angiotensin II mediated vasoconstriction of nonrenal vascular beds was responsible for about ⅔ of the hypertension following renal artery stenosis, and the resistance of the stenosis responsible for about ⅓.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Angiotensin II was infused into the renal artery of unanaesthetized dogs at 0.4 and 2.0 ng/kg per min for 40 min each.

2. Indomethacin (3 mg/kg, and 1 mg/kg per h infusion i.v.) accentuated the angiotensin II-induced falls in glomerular filtration rate, renal blood flow and urine flow rate. Indomethacin did not alter the effects of angiotensin II on Na+ or K+ excretions.

3. Aspirin (35 mg/kg p.o. 2.5 h and 0.5 h prior to experiment) did not significantly change the renal effects of angiotensin II.

4. Both aspirin and indomethacin accentuated renal vasoconstriction during briefer (5 min) angiotensin II infusion.

5. Thus indomethacin and aspirin had markedly different effects on the actions of angiotensin II in the kidney. This suggests that at least one of these drugs has actions which affect angiotensin II-mediated vasoconstriction other than via cyclooxygenase inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)