994 resultados para Angiopoietin-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) have been identified as ligands with different effector functions of the vascular assembly and maturation-mediating receptor tyrosine kinase Tie-2. To understand the molecular interactions of the angiopoietins with their receptor, we have studied the binding of Ang-1 and Ang-2 to the Tie-2 receptor. Enzyme-linked immunosorbent assay-based competition assays and co-immunoprecipitation experiments analyzing the binding of Ang-1 and Ang-2 to truncation mutants of the extracellular domain of Tie-2 showed that the first Ig-like loop of Tie-2 in combination with the epidermal growth factor (EGF)-like repeats (amino acids 1-360) is required for angiopoietin binding. The first Ig-like domain or the EGF-like repeats alone are not capable of binding Ang-1 and Ang-2. Concomitantly, we made the surprising finding that Tie-2 exon-2 knockout mice do express a mutated Tie-2 protein that lacks 104 amino acids of the first Ig-like domain. This mutant Tie-2 receptor is functionally inactive as shown by the lack of ligand binding and receptor phosphorylation. Collectively, the data show that the first 104 amino acids of the Tie-2 receptor are essential but not sufficient for angiopoietin binding. Conversely, the first 360 amino acids (Ig-like domain plus EGF-like repeats) of the Tie-2 receptor are necessary and sufficient to bind both Ang-1 and Ang-2, which suggests that differential receptor binding is not likely to be responsible for the different functions of Ang-1 and Ang-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sprouting of new capillaries from pre-existing blood vessels is a hallmark of angiogenesis during embryonic development and solid tumor growth [1]. In addition to the vascular endothelial growth factor (VEGF) and its receptors, the Tie receptors and their newly identified ligands, the angiopoietins, have been implicated in the control of blood vessel formation [2,3]. Although 'knockouts' of the gene encoding the Tie2 receptor, or its activating ligand angiopoietin-1 (Ang1), result in embryonic lethality in mice due to an absence of remodeling and sprouting of blood vessels [4,5], biological activity in vitro has not yet been described for this receptor-ligand system. In an assay in which a monolayer of endothelial cells were cultured on microcarrier beads and embedded in three-dimensional fibrin gels, recombinant Ang1 (0.5-10 nM) induced the formation of capillary sprouts in a dose-dependent manner that was completely inhibited by soluble Tie2 receptor extracellular domains. In contrast with VEGF, which also induced sprouting of capillaries, Ang1 was only very weakly mitogenic for endothelial cells. Suboptimal concentrations of VEGF and Ang1 acted synergistically to induce sprout formation. Thus, the biological activity of Ang1 in vitro is consistent with the specific phenotype of mice deficient in Tie2 or Ang1. The data suggest that, like in other developmental systems, blood vessel formation requires a hierarchy of master-control genes in which VEGF and angiopoietins, along with their receptors, are amongst the most important regulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal cord injury (SCI) is a devastating condition that affects people in the prime of their lives. A myriad of vascular events occur after SCI, each of which contributes to the evolving pathology. The primary trauma causes mechanical damage to blood vessels, resulting in hemorrhage. The blood-spinal cord barrier (BSCB), a neurovascular unit that limits passage of most agents from systemic circulation to the central nervous system, breaks down, resulting in inflammation, scar formation, and other sequelae. Protracted BSCB disruption may exacerbate cellular injury and hinder neurobehavioral recovery in SCI. In these studies, angiopoietin-1 (Ang1), an agent known to reduce vascular permeability, was hypothesized to attenuate the severity of secondary injuries of SCI. Using longitudinal magnetic resonance imaging (MRI) studies (dynamic contrast-enhanced [DCE]-MRI for quantification of BSCB permeability, highresolution anatomical MRI for calculation of lesion size, and diffusion tensor imaging for assessment of axonal integrity), the acute, subacute, and chronic effects of Ang1 administration after SCI were evaluated. Neurobehavioral assessments were also performed. These non-invasive techniques have applicability to the monitoring of therapies in patients with SCI. In the acute phase of injury, Ang1 was found to reduce BSCB permeability and improve neuromotor recovery. Dynamic contrast-enhanced MRI revealed a persistent compromise of the BSCB up to two months post-injury. In the subacute phase of injury, Ang1’s effect on reducing BSCB permeability was maintained and it was found to transiently reduce axonal integrity. The SCI lesion burden was assessed with an objective method that compared favorably with segmentations from human raters. In the chronic phase of injury, Ang1 resulted in maintained reduction in BSCB permeability, a decrease in lesion size, and improved axonal integrity. Finally, longitudinal correlations among data from the MRI modalities and neurobehavioral assays were evaluated. Locomotor recovery was negatively correlated with lesion size in the Ang1 cohort and positively correlated with diffusion measures in the vehicle cohort. In summary, the results demonstrate a possible role for Ang1 in mitigating the secondary pathologies of SCI during the acute and chronic phases of injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The intervertebral disc (IVD) has limited self-healing potential and disc repair strategies require an appropriate cell source such as progenitor cells that could regenerate the damaged cells and tissues. The objective of this study was to identify nucleus pulposus-derived progenitor cells (NPPC) and examine their potential in regenerative medicine in vitro. METHODS Nucleus pulposus cells (NPC) were obtained from 1-year-old bovine coccygeal discs by enzymatic digestion and were sorted for the angiopoietin-1 receptor Tie2. The obtained Tie2- and Tie2+ fractions of cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages in vitro. Colony-forming units were prepared from both cell populations and the colonies formed were analyzed and quantified after 8 days of culture. In order to improve the preservation of the Tie2+ phenotype of NPPC in monolayer cultures, we tested a selection of growth factors known to have stimulating effects, cocultured NPPC with IVD tissue, and exposed them to hypoxic conditions (2 % O2). RESULTS After 3 weeks of differentiation culture, only the NPC that were positive for Tie2 were able to differentiate into osteocytes, adipocytes, and chondrocytes as characterized by calcium deposition (p < 0.0001), fat droplet formation (p < 0.0001), and glycosaminoglycan content (p = 0.0095 vs. Tie2- NPC), respectively. Sorted Tie2- and Tie2+ subpopulations of cells both formed colonies; however, the colonies formed from Tie2+ cells were spheroid in shape, whereas those from Tie2- cells were spread and fibroblastic. In addition, Tie2+ cells formed more colonies in 3D culture (p = 0.011) than Tie2- cells. During expansion, a fast decline in the fraction of Tie2+ cells was observed (p < 0.0001), which was partially reversed by low oxygen concentration (p = 0.0068) and supplementation of the culture with fibroblast growth factor 2 (FGF2) (p < 0.0001). CONCLUSIONS Our results showed that the bovine nucleus pulposus contains NPPC that are Tie2+. These cells fulfilled formally progenitor criteria that were maintained in subsequent monolayer culture for up to 7 days by addition of FGF2 or hypoxic conditions. We propose that the nucleus pulposus represents a niche of precursor cells for regeneration of the IVD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiopoietin-1 (Ang-1) is an angiogenic growth factor that activates Tie-2 and integrins to promote vessel wall remodeling. The recent finding of the potential proatherogenic effects of Ang-1 prompted us to investigate whether Ang-1 promotes monocyte chemotaxis, endothelial binding, and transendothelial migration, key events in the progression of atherosclerosis. Here, we show that Ang-1 induces chemotaxis of monocytes in a manner that is independent of Tie-2 and integrin binding but dependent on phosphoinositide 3-kinase and heparin. In addition, Ang-1 promoted phosphoinositide 3-kinase-dependent binding of monocytes to endothelial monolayers and stimulated transendothelial migration. Fluorescence-activated cell sorting analysis showed that exogenous Ang-1 adheres directly to monocytes as well as to human umbilical endothelial cells, but neither Tie-2 mRNA nor protein were expressed by primary monocytes. Although Ang-1 binding to human umbilical endothelial cells was partially Tie-2 and integrin dependent, Ang-1 binding to monocytes was independent of these factors. Finally, preincubation of monocytes with soluble heparin abrogated Ang-1 binding to monocytes and migration, and partially prevented Ang-1 binding to human umbilical endothelial cells. In summary, Ang-1 induces chemotaxis of monocytes by a mechanism that is dependent on phosphoinositide 3-kinase and heparin but independent of Tie-2 and integrins. The ability of Ang-1 to recruit monocytes suggests it may play a role in inflammatory angiogenesis and may promote atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiogenesis is an essential component of endometrial repair and regeneration following menses. Perturbation of this process is associated with menorrhagia, a common gynecological disorder that results in excessive menstrual bleeding. Angiopoietin-1 (Ang-1) promotes vascular maturation via the Tie-2 receptor, while angiopoietin-2 (Ang-2) is its natural antagonist that destabilizes vessels and initiates neovascularization in the presence of vascular endothelial growth factor. To test the hypothesis that menorrhagia arises as a result of poor signal for vascular maturation, we have examined the expression of Ang-1, Ang-2, and Tie-2 in endometrium throughout the menstrual cycle from 30 normal women and 28 patients with menorrhagia. Ribonuclease protection assay and Western blot analysis showed Ang-2 expression was consistently higher than Ang-1 in normal endometrium throughout the cycle. However, with menorrhagia Ang-1 mRNA and protein were not detected or down-regulated, while Ang-2 was observed at similar levels in both normal and menorrhagic endometrium resulting in a greater than a 50% decrease in the ratio of Ang-1 to Ang-2 protein. In situ hybridization and immunohistochemical studies supported these findings and revealed cyclical changes in the expression of Ang-1 and Ang-2. These results suggest that the angiopoietin/Tie-2 system promotes vascular remodeling in endometrium and loss of normal Ang-1 expression may contribute to the excessive blood loss observed in menorrhagia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerosis is a chronic inflammatory disease occurring within the artery wall. A crucial step in atherogenesis is the infiltration and retention of monocytes into the subendothelial space of large arteries induced by chemokines and growth factors. Angiopoietin-1 (Ang-1) regulates angiogenesis and reduces vascular permeability and has also 15 been reported to promote monocyte migration in vitro. We investigated the role of Ang-1 in atherosclerosis-prone apolipoprotein-E (Apo-E) knockout mouse. Apo-E knockout (Apo-E-/-) mice fed a western or normal chow diet received a single iv injection of adenovirus encoding Ang-1 or control vector. Adenovirus-mediated systemic expression of Ang-1 induced a significant increase in early atherosclerotic lesion size and monocyte/macrophage accumulation compared with control animals receiving empty vector. Ang-1 significantly increased plasma MCP-1 and VEGF levels as measured by ELISA. FACS analysis showed that Ang-1 selectively increased inflammatory Gr1þmonocytes in the circulation, while the cell-surface 25 expression of CD11b, which mediates monocyte emigration, was significantly reduced. Ang-1 specifically increases circulating Gr1þinflammatory monocytes and increases monocyte/macrophage retention in atherosclerotic plaques, thereby contributing to development of atherosclerosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

L’angiogenèse est la formation de nouveaux vaisseaux sanguins à partir d’un réseau vasculaire existant. C’est un phénomène essentiel pour des processus physiologiques et pathologiques. L’activation des cellules endothéliales est contrôlée par plusieurs facteurs de croissance. Le VEGF et son récepteur le VEGFR-2 ont été prouvés comme étant spécifiques et critiques pour la formation des vaisseaux sanguins alors que Tie2, le récepteur auquel se lie l’Ang-1, est requis aussi bien dans le développement vasculaire que dans l’angiogenèse tumorale. Il est connu que l’activation de Tie2 est nécessaire à la stabilisation finale de la vascularisation en inhibant la perméabilité vasculaire induite par le VEGFR-2. Nous avons premièrement découvert que le facteur de croissance pro-angiogénique, l’Ang-1 contrecarre les effets de perméabilité cellulaire induits par le VEGF en inhibant la production de NO dans les cellules endothéliales. Cet effet inhibiteur de Tie2 intervient directement au niveau de l’activité de l’enzyme eNOS. Suite à l’activation de Tie2 par l’Ang-1, eNOS devient fortement phosphorylé sur la Thr497 après la phosphorylation et l’activation de la PKCζ. Nos résultats suggèrent que l’inhibition, par Tie2, de la perméabilité vasculaire durant l’angiogenèse serait due, en partie, à l’inhibition de la production de NO. Deuxièmement nous avons pu distinguer entre deux modes de migration cellulaire endothéliale induits par l’Ang-1 et le VEGF. À l’opposé du VEGF qui promeut une migration individuelle aléatoire, l’Ang-1 induit une migration collective directionnelle. Dans cette étude, nous avons identifié la β-caténine comme un nouveau partenaire moléculaire de la PKCζ. Cette association de la PKCζ à la β-caténine amène le complexe de polarité Par6-aPKC et le complexe des jonctions d’adhérences cellulaires à interagir ensemble à deux localisations différentes au niveau de la cellule endothéliale. Au niveau des contacts intercellulaires, le complexe PKCζ/β-caténine maintien la cohésion et l’adhésion cellulaire nécessaire pour le processus migratoire collectif. Ce complexe se retrouve aussi au niveau du front migratoire des cellules endothéliales afin d’assurer la directionalité et la persistance de la migration endothéliale en réponse à l’Ang-1. D’une manière intéressante, lors de l’inhibition de la PKCζ ou de la β-caténine on assiste à un changement du mode de migration en réponse à l’Ang-1 qui passe d’une migration directionnelle collective à une migration individuelle aléatoire. Ce dernier mode de migration est similaire à celui observé chez des cellules endothéliales exposées au VEGF. Ces résultats ont été corroborés in vivo par une polarité et une adhésion défectueuses au cours de la vasculogenèse chez le poisson zèbre déficient en PKCζ. En résumé, Ang-1/Tie2 module la signalisation et les réponses biologiques endothéliales déclenchées par le VEGF/VEGFR-2. L’identification des mécanismes moléculaires en aval de ces deux récepteurs, Tie2 et VEGFR-2, et la compréhension des différentes voies de signalisation activées par ces complexes moléculaires nous permettra de mettre la lumière sur des nouvelles cibles thérapeutiques pour le traitement des maladies angiogéniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pericyte loss is an early pathologic feature of diabetic retinopathy, consistently present in retinae of diabetic humans and animals. Because pericyte recruitment and endothelial cell survival are controlled, in part, by the angiopoietin/Tie2 ligand/receptor system, we studied the expression of angiopoietin-2 and -1 in relation to the evolution of pericyte loss in diabetic rat retinae, using quantitative retinal morphometry, and in retinae from mice with heterozygous angiopoietin deficiency (Ang-2 LacZ knock-in mice). Finally, recombinant angiopoietin-2 was injected into eyes of nondiabetic rats, and pericyte numbers were quantitated in retinal capillaries. Angiopoietin-1 protein was present in the normal maturing retina and was upregulated 2.5-fold in diabetic retinae over 3 months of diabetes. In contrast, angiopoietin-2 protein was consistently upregulated more than 30-fold in the retinae of diabetic rats, preceding the onset of pericyte loss. Heterozygous angiopoietin-2 deficiency completely prevented diabetes-induced pericyte loss and reduced the number of acellular capillary segments. Injection of angiopoietin-2 into the eyes of normal rats induced a dose-dependent pericyte loss. These data show that upregulation of angiopoietin-2 plays a critical role in the loss of pericytes in the diabetic retina.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Angiopoietin-2 (Ang-2) antagonises the maturing effect of angiopoietin-1 (Ang-1) on blood vessels, and cooperates with VEGF to induce neovascularisation. In knockout mice, Ang-2 displayed a specific role in postnatal angiogenic remodelling. Here, we demonstrate that mice deficient in Ang-2 fail to form a proper spatial retinal vascular network. The retinal vasculature was characterised by reduced large vessel numbers and defects forming the superficial periphery mostly on the arteriolar site, and the secondary and tertiary deep capillary network. Hypoxia in the retinal periphery induced a four-fold VEGF upregulation and active endothelial proliferation for up to 60 days. Concomitantly, retinal digest preparations showed increased arteriolar (+33%) and capillary diameters (+90%), and fluorescein angiograms revealed leakiness of neovascular front. At one year of age, persistent preretinal vessels were non-leaky in accordance with a relative increase in the ratio of Ang-1 to VEGF. Taken together, the data suggest that Ang-2 has an important function in the spatial configuration of the three-dimensional retinal vasculature. Secondarily, prolonged VEGF activity results in a model of persistent proliferative retinopathy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sustained growth of solid tumours can rely on both the formation of new and the co-option of existing blood vessels. Current models suggest that binding of angiopoietin-2 (Ang-2) to its endothelial Tie2 receptor prevents receptor phosphorylation, destabilizes blood vessels, and promotes vascular permeability. In contrast, binding of angiopoietin-1 (Ang-1) induces Tie2 receptor activation and supports the formation of mature blood vessels covered by pericytes. Despite the intense research to decipher the role of angiopoietins during physiological neovascularization and tumour angiogenesis, a mechanistic understanding of angiopoietin function on vascular integrity and remodelling is still incomplete. We therefore assessed the vascular morphology of two mouse mammary carcinoma xenotransplants (M6378 and M6363) which differ in their natural angiopoietin expression. M6378 displayed Ang-1 in tumour cells but no Ang-2 in tumour endothelial cells in vivo. In contrast, M6363 tumours expressed Ang-2 in the tumour vasculature, whereas no Ang-1 expression was present in tumour cells. We stably transfected M6378 mouse mammary carcinoma cells with human Ang-1 or Ang-2 and investigated the consequences on the host vasculature, including ultrastructural morphology. Interestingly, M6378/Ang-2 and M6363 tumours displayed a similar vascular morphology, with intratumoural haemorrhage and non-functional and abnormal blood vessels. Pericyte loss was prominent in these tumours and was accompanied by increased endothelial cell apoptosis. Thus, overexpression of Ang-2 converted the vascular phenotype of M6378 tumours into a phenotype similar to M6363 tumours. Our results support the hypothesis that Ang-1/Tie2 signalling is essential for vessel stabilization and endothelial cell/pericyte interaction, and suggest that Ang-2 is able to induce a switch of vascular phenotypes within tumours.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Septic shock is characterized by increased vascular permeability and hypotension despite increased cardiac output. Numerous vasoactive cytokines are upregulated during sepsis, including angiopoietin 2 (ANG2), which increases vascular permeability. Here we report that mice engineered to inducibly overexpress ANG2 in the endothelium developed sepsis-like hemodynamic alterations, including systemic hypotension, increased cardiac output, and dilatory cardiomyopathy. Conversely, mice with cardiomyocyte-restricted ANG2 overexpression failed to develop hemodynamic alterations. Interestingly, the hemodynamic alterations associated with endothelial-specific overexpression of ANG2 and the loss of capillary-associated pericytes were reversed by intravenous injections of adeno-associated viruses (AAVs) transducing cDNA for angiopoietin 1, a TIE2 ligand that antagonizes ANG2, or AAVs encoding PDGFB, a chemoattractant for pericytes. To confirm the role of ANG2 in sepsis, we i.p. injected LPS into C57BL/6J mice, which rapidly developed hypotension, acute pericyte loss, and increased vascular permeability. Importantly, ANG2 antibody treatment attenuated LPS-induced hemodynamic alterations and reduced the mortality rate at 36 hours from 95% to 61%. These data indicate that ANG2-mediated microvascular disintegration contributes to septic shock and that inhibition of the ANG2/TIE2 interaction during sepsis is a potential therapeutic target.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims - Endothelial dysfunction is a hallmark of preeclampsia. Desensitization of the phosphoinositide 3-kinase (PI3K)/Akt pathway underlies endothelial dysfunction and haeme oxygenase-1 (HO-1) is decreased in preeclampsia. To identify therapeutic targets, we sought to assess whether these two regulators act to suppress soluble endoglin (sEng), an antagonist of transforming growth factor-ß (TGF-ß) signalling, which is known to be elevated in preeclampsia. Methods and results - Vascular endothelial growth factor-A (VEGF-A), fibroblast growth factor (FGF-2), angiopoietin-1 (Ang-1), and insulin, which all activate the PI3K/Akt pathway, inhibited the release of sEng from endothelial cells. Inhibition of the PI3K/Akt pathway, by overexpression of phosphatase and tensin homolog (PTEN) or a dominant-negative isoform of Akt (Aktdn) induced sEng release from endothelial cells and prevented the inhibitory effect of VEGF-A. Conversely, overexpression of a constitutively active Akt (Aktmyr) inhibited PTEN and cytokine-induced sEng release. Systemic delivery of Aktmyr to mice significantly reduced circulating sEng, whereas Aktdn promoted sEng release. Phosphorylation of Akt was reduced in preeclamptic placenta and this correlated with the elevated level of circulating sEng. Knock-down of Akt using siRNA prevented HO-1-mediated inhibition of sEng release and reduced HO-1 expression. Furthermore, HO-1 null mice have reduced phosphorylated Akt in their organs and overexpression of Aktmyr failed to suppress the elevated levels of sEng detected in HO-1 null mice, indicating that HO-1 is required for the Akt-mediated inhibition of sEng. Conclusion - The loss of PI3K/Akt and/or HO-1 activity promotes sEng release and positive manipulation of these pathways offers a strategy to circumvent endothelial dysfunction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prostate cancer frequently metastasizes to bone, which becomes incurable; yet how cancer cells manage to migrate and grow inside the bone remains unknown. In this study I have discovered that both bone and fat cells within the bone marrow actively promote the survival and expansion of prostate cancer cells, and have subsequently developed approaches that can effectively inhibit these processes. Therefore, my work offers opportunities for the development of new prognostic and therapeutic approaches against metastatic prostate cancer and have the potential for improving the treatment outcome of the patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The blood and lymphatic vascular systems are essential for life, but they may become harnessed for sinister purposes in pathological conditions. For example, tumors learn to grow a network of blood vessels (angiogenesis), securing a source of oxygen and nutrients for sustained growth. On the other hand, damage to the lymph nodes and the collecting lymphatic vessels may lead to lymphedema, a debilitating condition characterized by peripheral edema and susceptibility to infections. Promoting the growth of new lymphatic vessels (lymphangiogenesis) is an attractive approach to treat lymphedema patients. Angiopoietin-1 (Ang1), a ligand for the endothelial receptor tyrosine kinases Tie1 and Tie2. The Ang1/Tie2 pathway has previously been implicated in promoting endothelial stability and integrity of EC monolayers. The studies presented here elucidate a novel function for Ang1 as a lymphangiogenic factor. Ang1 is known to decrease the permeability of blood vessels, and could thus act as a more global antagonist of plasma leakage and tissue edema by promoting growth of lymphatic vessels and thereby facilitating removal of excess fluid and other plasma components from the interstitium. These findings reinforce the idea that Ang1 may have therapeutic value in conditions of tissue edema. VEGFR-3 is present on all endothelia during development, but in the adult its expression becomes restricted to the lymphatic endothelium. VEGF-C and VEGF-D are ligands for VEGFR-3, and potently promote lymphangiogenesis in adult tissues, with direct and remarkably specific effects on the lymphatic endothelium in adult tissues. The data presented here show that VEGF-C and VEGF-D therapy can restore collecting lymphatic vessels in a novel orthotopic model of breast cancer-related lymphedema. Furthermore, the study introduces a novel approach to improve VEGF-C/VEGF-D therapy by using engineered heparin-binding forms of VEGF-C, which induced the rapid formation of organized lymphatic vessels. Importantly, VEGF-C therapy also greatly improved the survival and integration of lymph node transplants. The combination of lymph node transplantation and VEGF-C therapy provides a basis for future therapy of lymphedema. In adults, VEGFR-3 expression is restricted to the lymphatic endothelium and the fenestrated endothelia of certain endocrine organs. These results show that VEGFR-3 is induced at the onset of angiogenesis in the tip cells that lead the formation of new vessel sprouts, providing a tumor-specific vascular target. VEGFR-3 acts downstream of VEGF/VEGFR-2 signals, but, once induced, can sustain angiogenesis when VEGFR-2 signaling is inhibited. The data presented here implicate VEGFR-3 as a novel regulator of sprouting angiogenesis along with its role in regulating lymphatic vessel growth. Targeting VEGFR-3 may provide added efficacy to currently available anti-angiogenic therapeutics, which typically target the VEGF/VEGFR-2 pathway.