998 resultados para Analytical Chemistry


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units, of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-Layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information Visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two series of lanthanide oxides with different morphologies were synthesized through calcinations of two types of citrate polymeric precursors. These oxides were characterized by XRD patterns, SEM electronic microscopy, and N(2) adsorption isotherms. SEM microscopy analysis showed that the calcination of crystalline fibrous precursors [Ln(2)(LH)(3)center dot 2H(2)O] (L = citrate) originated fibrous shaped particles. On the other hand, the calcination of irregular shaped particles of precursors [LnL center dot xH(2)O] originated irregular shaped particles of oxide, pointing out a morphological template effect of precursors on the formation of the respective oxides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The region of Toledo River, Parana, Brazil is characterized by intense anthropogenic activities. Hence, metal concentrations and physical-chemical parameters of Toledo River water were determined in order to complete an environmental evaluation catalog. Samples were collected monthly during one year period at seven different sites from the source down the river mouth, physical-chemical variables were analyzed, and major metallic ions were measured. Metal analysis was performed by using the synchrotron radiation total reflection X-ray fluorescence technique. A statistical analysis was applied to evaluate the reliability of experimental data. The analysis of obtained results have shown that a strong correlation between physical-chemical parameters existed among sites 1 and 7, suggesting that organic pollutants were mainly responsible for decreasing the Toledo River water quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the thermal and structural properties of different commercial dental resins: Filtek(TM) Z-350, Grandio(A (R)), Tetric Ceram(A (R)), and TPH Spectrum(A (R)). The purpose of the present study was to evaluate quantitatively the photo-polymerization behavior and the effect of filler contents on the kinetic cures of the dental resins by using Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques. We have successfully obtained the low and high glass transition T (g) values of the dental composite resins from DSC curves. It was also observed a good agreement between the both T (g) values, activation energies from thermal degradation, and the degree of conversion obtained for all samples. The results have shown that Tetric Ceram(A (R)) dental resin presented the higher T (g) values, activation energy of 215 +/- A 6 KJ mol(-1), and the higher degree of conversion (63%) when compared to the other resins studied herein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phase formation kinetics of YAP (YAlO(3)) synthesized through the polymeric precursor method was investigated by thermal analysis, X-ray diffraction and FT-IR spectroscopy. We demonstrated that the YAP synthesis is highly dependent on the heat and mass transport during all stages of the synthesis route. In the first stages, during the preparation of amorphous precursor, ""hot spots"" need to be suppressed to avoid the occurrence of chemical inhomogeneities. Very high heating rates combined with small amorphous particles are advantageous in the last stage during the formation of crystalline phase. We were able to synthesize nanosized particles of YAP single phase at temperatures around 1100 A degrees C for future preparation of phosphors or ceramics for optics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pure Er:YAB (Er:YAl(3)(BO(3))(4)) nanometer-sized crystalline powder was produced from low cost chemical route, the polymeric precursor method. The initial homogeneous solutions were heat treated from 200 to 700A degrees C under oxygen atmosphere and the unique crystalline phase was synthesized at around 1150A degrees C. The thermal treatments and the initial stoichiometry play a very important role on the Er:YAB preparation. The thermal events of amorphous precursor resins and the crystallization process up to phase formation were investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structural and thermal properties of three different dental composite resins, Filtek (TM) Supreme XT, Filtek (TM) Z-250 and TPHA (R)(3) were investigated in this study. The internal structures of uncured and cured resins with blue light-emitting diodes (LEDs) were examined by Micro-Raman spectroscopy. Thermal analysis techniques as DSC, TG and DTG methods were used to investigate the temperature characteristics, as glass transition (T (g) ), degradation, and the thermal stability of the resins. The results showed that the TPHA (R)(3) and Filtek (TM) Supreme XT presented very similar T (g) values, 48 and 50A degrees C, respectively, while the Filtek (TM) Z-250 composite resin presented a higher one, 58A degrees C. AFM microscope was utilized in order to analyze the sample morphologies, which possess different fillers. The composed resin Filtek (TM) Z-250 has a well interconnected more homogeneous morphology, suggesting a better degree of conversion correlated to the glass phase transition temperature. The modes of vibration of interest in the resin were investigated using Raman spectroscopy. It was possible to observe the bands representative for the C=C (1630 cm(-1)) and C=O(1700 cm(-1)) vibrations were studied with respect to their compositions and polymerization. It was observed that the Filtek (TM) Z -250 resin presents the best result related to the thermal properties and polymerization after light curing among the other resins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zinc oxide is a widely used white inorganic pigment. Transition metal ions are used as chromophores and originate the ceramic pigments group. In this context, ZnO particles doped with Co, Fe, and V were synthesized by the polymeric precursors method, Pechini method. Differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques were used to accurately characterize the distinct thermal events occurring during synthesis. The TG and DSC results revealed a series of decomposition temperatures due to different exothermal events, which were identified as H(2)O elimination, organic compounds degradation and phase formation. The samples were structurally characterized by X-Ray diffractometry revealing the formation of single phase, corresponding to the crystalline matrix of ZnO. The samples were optically characterized by diffuse reflectance measurements and colorimetric coordinates L*, a*, b* were calculated for the pigment powders. The pigment powders presented a variety of colors ranging from white (ZnO), green (Zn(0.97)Co(0.03)O), yellow (Zn(0.97)Fe(0.03)O), and beige (Zn(0.97)V(0.03)O).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal properties and degree of conversion (DC%) of two composite resins (microhybrid and nanocomposite) and two photo-activation methods (continuous and gradual) displayed by the light-emitting diode (LED) light-curing units (LCUs) were investigated in this study. Differential scanning calorimetry (DSC) thermal analysis technique was used to investigate the glass transition temperature (T(g)) and degradation temperature. The DC% was determined by Fourier transform infrared spectroscopy (FT-IR). The results showed that the microhybrid composite resin presented the highest T(g) and degradation temperature values, i.e., the best thermal stability. Gradual photo-activation methods showed higher or similar T(g) and degradation temperature values when compared to continuous method. The Elipar Freelight 2 (TM) LCU showed the lowest T(g) values. With respect to the DC%, the photo-activation method did not influence the final conversion of composite resins. However, Elipar Freelight 2 (TM) LCU and microhybrid resin showed the lowest DC% values. Thus, the presented results suggest that gradual method photo-activation with LED LCUs provides adequate degree of conversion without promoting changes in the polymer chain of composite resins. However, the thermal properties and final conversion of composite resins can be influenced by the kind of composite resin and LCU.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 angstrom. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of delta(66)Zn determinations in aerosols is around 0.05% per atomic mass unit. The method was tested on aerosols collected in Sin Paulo City, Brazil. The measurements reveal significant variations in delta(66)Zn(Imperial) ranging between -0.96 and -0.37% in coarse and between -1.04 and 0.02% in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source. We present further delta(66)Zn(Imperial) data for the standard reference material NIST SRM 2783 (delta 66Z(Imperial) = 0.26 +/- 0.10%).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There has been little research on metal concentration levels in urban soils of SA o pound Paulo, a city with 19 million inhabitants with severe pollution problems. In the present study, the concentration of As, Ba, Cr, Cu, Pb, Sb and Zn, were determined by INAA and XRF in surface soil samples from 7 public parks located within SA o pound Paulo city. The results obtained showed that soils of SA o pound Paulo public parks present concentration levels of the studied elements higher than the reference values for soils in SA o pound Paulo State. Traffic related elements such as Cu, Pb and Zn presented high concentrations in parks located near avenues of highly dense traffic and may be associated to vehicular sources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper develops a bias correction scheme for a multivariate heteroskedastic errors-in-variables model. The applicability of this model is justified in areas such as astrophysics, epidemiology and analytical chemistry, where the variables are subject to measurement errors and the variances vary with the observations. We conduct Monte Carlo simulations to investigate the performance of the corrected estimators. The numerical results show that the bias correction scheme yields nearly unbiased estimates. We also give an application to a real data set.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Instrumental neutron activation analysis (INAA), have been used for the definition of compositional groups of potteries from Justino site, Brazil, according to the chemical similarities of ceramic paste. The outliers were identified by means of robust Mahalanobis distance. The temper effect in the ceramic paste was studied by means of modified Mahalanobis filter. The results were interpreted by means of cluster, principal components, and discriminant analyses. This work provides contributions for the reconstruction of the prehistory of baixo Sao Francisco region, and for the reconstitution of the Brazilian Northeast ceramist population of general frame.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of volatile organic compounds (VOC) by plants is well known. However, few scientific groups have studied VOC produced by green, brown and red algae. Headspace collection of volatiles and solid phase microextraction, as well as the traditional extraction by hydrodistillation combined with analytical chromatographic techniques (i.e., GC-MS), have significantly improved the investigation of VOC from plants and algae. The major volatile compounds found in seaweeds are hydrocarbons, terpenes, phenols, alcohols, aldehydes, ketones, esters, fatty acids and halogen or sulfur-containing compounds. This article presents an overview of VOC isolated from and identified in marine macro-algae. Focus is given to non-halogenated and non-sulfur volatile compounds, as well as strategies to analyze and identify algal VOC by GC-MS.