72 resultados para Anacystis nidulans


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A genomic fragment encoding alpha(APC) and beta(APC) (i.e., alpha and beta units of the allophycocyanin, APC) from Anacystis nidulans UTEX 625 was cloned and sequenced. This fragment, containing a non-coding sequence of 56 nucleotides in between, was then subcloned into the expression vector pMal-c2 downstream from and in frame with the malE gene of E. coli encoding MBP ( maltose binding protein). The fusion protein was purified by amylose affinity chromatography and cleaved by coagulation factor Xa. alpha(APC) and beta(APC) were then separated from MBP and MBP fusion proteins, respectively, and concentrated by membrane centrifugation. The study provides a method to produce recombinant allophycocyanin subunits for biomedical and biotechnological applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine Streptomyces are potential candidates for novel natural products and industrial catalysts. In order to set up biosynthesis approach for a holomycin-producing strain M095 isotated from Jiaozhou Bay, China, a genetic transformation system was established using intergeneric conjugation. The plasmid pIJ8600 consists of an origin of replication for Escherichia coli, a phage integrase directing efficient site-specific integration in bacterial chromosome, thiostrepton-induced promoter and an attP sequence. Using E. coli ET12567 (pUZ8002) carrying pIJ8600 as a conjugal donor, while it was mated with strain M095, pIJ8600 was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. The frequency of exconjugants was 1.9 +/- 0.13 x 10(-4) per recipient cell. Analysis of eight exconjugants showed pIJ8600 was stable integrated at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the attB was cloned and shown to be conserved. The results of growth and antimicrobial activity analysis indicated that the integration of pIJ8600 did not seem to affect the biosynthesis of antibiotics or other essential amino acids. To demonstrate the feasibility of above gene transfer system, the allophycocyanin gene (apc) from cyanobacterium Anacystis nidulans UTEX625 was expressed in strain M095, and the results indicated heterologous allophycocyanin could be expressed and folded effectively. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

作者所在的课题组,自1998年以来从胶州湾海泥中陆续分离了800株海洋放线菌,并从4株放线菌中分离出了12个新结构活性化合物。选择产生新颖抗肿瘤抗生素的海洋放线菌M045和M048,产全霉素的海洋放线菌M095和产蒽醌类化合物的海洋放线菌M097为研究材料,建立了海洋放线菌的遗传转化体系,为海洋放线菌的遗传工程操作及天然化合物组合生物合成奠定了基础。 (1)通过接合转移建立了菌株M045的遗传转化体系。用来源于蓝藻Anacystis nidulans UTEX625的别藻蓝蛋白基因验证了转化体系的有效性。通过PCR及基因组步移方法获得长度为1709bp的部分聚酮合成酶(PKS)基因,分析其同放射菌素基因具有同源性,利用基因中断插入失活该基因,但未获得突变株。因此尝试通过反向遗传学方法,克隆该菌株中新骨架抗肿瘤抗生素——中国霉素的生物合成基因簇,本研究已经构建了该菌株Fosmid基因组文库,对基因组文库的筛选工作正在进行中。 (2)利用PEG-介导的质粒pIJ702转化原生质体和接合转移两种方法均成功获得菌株M048的转化子,其中接合转移率高达10-4。菌株M048来源于高盐的海洋环境,维持原生质体所需渗透压与模式菌株—变铅青链霉菌(Streptomyces lividans)有很大差异,本研究对菌株M048原生质体形成和再生的各种因素进行了优化,获得了渗透压稳定剂蔗糖最佳浓度为0.4M。 质粒pIJ8600整合于菌株M048染色体上,对该转化株的抑菌活性、薄层层析(TLC)以及HPLC-MS进行了分析。结果表明,同野生菌株相比,该转化株对7种受试菌的抑菌活性显著增强,TLC显示差异的化合物条带,HPLC-MS显示化合物组分有差异。因此质粒pIJ8600的整合,引起菌株次级代谢产物生物合成途径的改变,使有抑菌活性的化合物大量累积。 从菌株M048染色体上克隆获得了1196bp的部分PKS基因,通过基因中断插入失活该基因,结果显示M048突变株次级代谢产物抑菌活性增强,HPLC分析发现显著差异。初步分析该PKS基因的中断使菌株体内某些生物合成途径受阻,而大量合成抗菌活性强的chandrananimycin C,或者产生了抑菌活性强的其它化合物。 (3)本研究成功建立了菌株M095的接合转移体系。M095/pIJ8600转化株的生物学活性分析并未发现差异,表明该菌株染色体上的整合位点(attB)是中性(neutral)的。通过PCR以及基因组步移的方法克隆获得了该菌株的部分糖基转移酶基因,该基因中断突变株对4株受试菌的抑菌活性增强,HPLC显示有差异,表明该糖基转移酶基因参与了菌株M095活性次级代谢产物的生物合成过程。 (4)对于菌株M097,用接合转移法成功获得了转化子。实现了别藻蓝蛋白基因的重组表达,并纯化了表达产物,体外试验表明其具有清除羟基自由基能力。结果表明来源于蓝藻的外源基因可以在海洋放线菌体内有效表达和正确折叠,初步验证了本研究所建立的海洋放线菌遗传转化体系的稳定性及有效性。对M097/pIJ8600转化株的生物学活性分析,未发现差异,表明该菌株染色体上的整合位点是中性的。 本论文首次将基因工程技术引入四株海洋放线菌,建立了海洋放线菌自身的基因转移系统,为利用基因工程技术改造海洋放线菌的天然化合物生物合成途径提供了方法。对部分PKS基因中断突变株的生物学活性及化学分析,初步揭示了通过遗传转化方法进行化合物组合生物合成的可行性。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cyanobacterium Synechococcus sp. PCC 7942 (Anacystis nidulans R2) adjusts its photosynthetic function by changing one of the polypeptides of photosystem II. This polypeptide, called Dl, is found in two forms in Synechococcus sp. PCC 7942. Changing the growth light conditions by increasing the light intensity to higher levels results in replacement of the original form of D 1 polypeptide, D 1: 1, with another form, D 1 :2. We investigated the role of these two polypeptides in two mutant strains, R2S2C3 (only Dl:l present) and R2Kl (only Dl:2 present) In cells with either high or low PSI/PSII. R2S2C3 cells had a lower amplitude for 77 K fluorescence emission at 695 nm than R2Kl cells. Picosecond fluorescence decay kinetics showed that R2S2C3 cells had shorter lifetimes than R2Kl cells. The lower yields and shorter lifetimes observed in the D 1 and Dl:2 containing cells. containing cells suggest that the presence of D 1: 1 results in more photochemical or non-photochemical quenching of excitation energy In PSII. One of the most likely mechanisms for the increased quenching in R2S2C3 cells could be an increased efficiency in the transfer of excitation energy from PSII to PSI. However, photophysical studies including 77 K fluorescence measurements and picosecond time resolved decay kinetics comparing low and high PSI/PSII cells did not support the hypothesis that D 1: 1 facilitates the dissipation of excess energy by energy transfer from PSII to PSI. In addition physiological studies of oxygen evolution measurements after photoinhibition treatments showed that the two mutant cells had no difference in their susceptibility to photoinhibition with either high PSI/PSII ratio or low PSI/PSII ratio. Again suggesting that, the energy transfer efficiency from PSII to PSI is likely not a factor in the differences between Dl:l and Dl:2 containing cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultraviolet-B (UVB) (290–320 nm) radiation-induced cyclobutane pyrimidine dimers within the DNA of epidermal cells are detrimental to human health by causing mutations and immunosuppressive effects that presumably contribute to photocarcinogenesis. Conventional photoprotection by sunscreens is exclusively prophylactic in nature and of no value once DNA damage has occurred. In this paper, we have therefore assessed whether it is possible to repair UVB radiation-induced DNA damage through topical application of the DNA-repair enzyme photolyase, derived from Anacystis nidulans, that specifically converts cyclobutane dimers into their original DNA structure after exposure to photoreactivating light. When a dose of UVB radiation sufficient to induce erythema was administered to the skin of healthy subjects, significant numbers of dimers were formed within epidermal cells. Topical application of photolyase-containing liposomes to UVB-irradiated skin and subsequent exposure to photoreactivating light decreased the number of UVB radiation-induced dimers by 40–45%. No reduction was observed if the liposomes were not filled with photolyase or if photoreactivating exposure preceded the application of filled liposomes. The UVB dose administered resulted in suppression of intercellular adhesion molecule-1 (ICAM-1), a molecule required for immunity and inflammatory events in the epidermis. In addition, in subjects hypersensitive to nickel sulfate, elicitation of the hypersensitivity reaction in irradiated skin areas was prevented. Photolyase-induced dimer repair completely prevented these UVB radiation-induced immunosuppressive effects as well as erythema and sunburn-cell formation. These studies demonstrate that topical application of photolyase is effective in dimer reversal and thereby leads to immunoprotection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé La ribonucléase P (RNase P) est une ribonucléoprotéine omniprésente dans tous les règnes du vivant, elle est responsable de la maturation en 5’ des précurseurs des ARNs de transfert (ARNts) et quelques autres petits ARNs. L’enzyme est composée d'une sous unité catalytique d'ARN (ARN-P) et d'une ou de plusieurs protéines selon les espèces. Chez les eucaryotes, l’activité de la RNase P cytoplasmique est distincte de celles des organelles (mitochondrie et chloroplaste). Chez la plupart des espèces, les ARN-P sont constituées de plusieurs éléments structuraux secondaires critiques conservés au cours de l’évolution. En revanche, au niveau de la structure, une réduction forte été observé dans la plupart des mtARN-Ps. Le nombre de protéines composant la RNase P est extrêmement variable : une chez les bactéries, environ quatre chez les archéobactéries, et dix chez la forme cytoplasmique des eucaryotes. Cet aspect est peu connu pour les formes mitochondriales. Dans la plupart des cas, l’identification de la mtRNase P est le résultat de longues procédures de purification comprenant plusieurs étapes dans le but de réduire au minimum le nombre de protéines requises pour l’activité (exemple de la levure et A. nidulans). Cela mène régulièrement à la perte de l’activité et de l’intégrité des complexes ribonucléo-protéiques natifs. Dans ce travail, par l’utilisation de la technique de BN-PAGE, nous avons développé une procédure d’enrichissement de l’activité RNase P mitochondriale native, donnant un rendement raisonnable. Les fractions enrichies capables de cette activité enzymatique ont été analysées par LC/MS/MS et les résultats montrent que l’holoenzyme de la RNase P de chacune des fractions contient un nombre de protéines beaucoup plus grand que ce qui était connue. Nous suggérons une liste de protéines (principalement hypothétiques) qui accompagnent l’activité de la RNase P. IV De plus, la question de la localisation de la mtRNase P de A. nidulans a été étudiée, selon nos résultats, la majorité de la mtRNase P est attachée á la membrane interne de la mitochondrie. Sa solubilisation se fait par l’utilisation de différents types de détergent. Ces derniers permettent l’obtention d’un spectre de complexes de la RNase P de différentes tailles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanins are pigments of high molecular weight formed by oxidative polymerization of phenolic or indolic compounds. A number of fungi, including Aspergillus nidulans, produce pigments related or identical to melanin, which are located on cell walls or exist as extracellular polymers. The aim of the present study was to assess the antioxidant activity of synthetic melanin and of the pigment extracted from the mycelium and culture medium after growth of the highly melanized strain (MEL1) from A. nidulans. The ability of the melanin pigment to scavenge the oxidants HOCl and H2O2 was evaluated by inhibition of the oxidation of 5-thio-2-nitrobenzoic acid (TNB) using several melanin concentrations. The results showed that the pigment of the MEL1 strain competes with TNB for H2O2 and HOCl, inhibiting TNB oxidation in a concentration-dependent manner. For the HOCl oxidant, this inhibition was comparable to that of synthetic melanin, whose IC50 values were quite close for both pigments. Thus, our results suggest that the melanin from A. nidulans is a potential HOCl scavenger and may be considered a promising material for the cosmetic industry for the formulation of creams that protect the skin against possible oxidative damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspergillus nidulans is a non-pathogenic fungus with well-developed genetics which provides an excellent model system for studying different aspects of drug resistance in filamentous fungi. As a preliminary step to characterizing genes that confer pleiotropic drug resistance in Aspergillus, we isolated cycloheximide-sensitive mutants of A. nidulans, which is normally resistant to this: drug. The rationale for this approach is to identify gents whose products are important for drug resistance by analysing mutations that alter the resistance/sensitivity status of the cell. Fifteen cycloheximide-sensitive (named scy for sensitive to cycloheximide) mutants of A, nidulans were isolated and genetically characterised. Each scy mutant was crossed with the wild-type strain and five of the crosses gave 50% cycloheximide-sensitive progeny suggesting that they carry a single mutation required for cycloheximide sensitivity. We examined ten sep mutants for resistance/sensitivity to other drugs or stress agents with different and/or the same mechanism of action, Sis of these mutants exhibited other altered resistance/sensitivity phenotypes which were linked to the cycloheximide sensitivity, These six mutants were analyzed by pairwise crosses and found to represent six linkage groups, named scyA-F. One of the mutants showed fragmentation of its vacuolar system and, in addition, its growth was osmotic, low-pi-II and oxidative-stress sensitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)