943 resultados para Amyloid precursor protein (APP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amyloid precursor protein (APP) is a type I transmembrane glycoprotein, which resembles a cell surface receptor, comprising a large ectodomain, a single spanning transmembrane part and a short C-terminal, cytoplasmic domain. It belongs to a conserved gene family, with over 17 members, including also the two mammalian APP homologues proteins APLP1 and APLP2 („amyloid precursor like proteins“). APP is encoded by 19 exons, of which exons 7, 8, and 15 can be alternatively spliced to produce three major protein isoforms APP770, APP751 and APP695, reflecting the number of amino acids. The neuronal APP695 is the only isoform that lacks a Kunitz Protease Inhibitor (KPI) domain in its extracellular portion whereas the two larger, peripheral APP isoforms, contain the 57-amino-acid KPI insert. rnRecently, research effort has suggested that APP metabolism and function is thought to be influenced by homodimerization and that the oligomerization state of APP could also play a role in the pathology of Alzheimer's disease (AD), by regulating its processing and amyloid beta production. Several independent studies have shown that APP can form homodimers within the cell, driven by motifs present in the extracellular domain, as well as in the juxtamembrane (JM) and transmembrane (TM) regions of the molecule, whereby the exact molecular mechanism and the origin of dimer formation remains elusive. Therefore, we focused in our study on the actual subcellular origin of APP homodimerization within the cell, an underlying mechanism, and a possible impact on dimerization properties of its homologue APLP1. Furthermore, we analyzed homodimerization of various APP isoforms, in particular APP695, APP751 and APP770, which differ in the presence of a Kunitz-type protease inhibitor domain (KPI) in the extracellular region. In order to assess the cellular origin of dimerization under different cellular conditions, we established a mammalian cell culture model-system in CHO-K1 (chinese hamster ovary) cells, stably overexpressing human APP, harboring dilysine based organelle sorting motifs at the very C-terminus [KKAA-Endoplasmic Reticulum (ER); KKFF-Golgi]. In this study we show that APP exists as disulfide-bound, SDS-stable dimers, when it was retained in the ER, unlike when it progressed further to the cis-Golgi, due to the KKFF ER exit determinant. These stable APP complexes were isolated from cells, and analyzed by SDS–polyacrylamide gel electrophoresis under non-reducing conditions, whereas strong denaturing and reducing conditions completely converted those dimers to monomers. Our findings suggested that APP homodimer formation starts early in the secretory pathway and that the unique oxidizing environment of the ER likely promotes intermolecular disulfide bond formation between APP molecules. We particularly visualized APP dimerization employing a variety of biochemical experiments and investigated the origin of its generation by using a Bimolecular Fluorescence Complementation (BiFC) approach with split GFP-APP chimeras. Moreover, using N-terminal deletion constructs, we demonstrate that intermolecular disulfide linkage between cysteine residues, exclusively located in the extracellular E1 domain, represents another mechanism of how an APP sub-fraction can dimerize within the cell. Additionally, mutational studies revealed that cysteines at positions 98 and 105, embedded in the conserved loop region within the E1 domain, are critical for interchain disulfide bond formation. Using a pharmacological treatment approach, we show that once generated in the oxidative environment of the ER, APP dimers remain stably associated during transport, reaching the plasma membrane. In addition, we demonstrate that APP isoforms, encompassing the KPI domain, exhibit a strongly reduced ability to form cis-directed dimers in the ER, whereas trans-directed cell aggregation of Drosophila Schneider (S2)-cells was isoform independent, mediating cell-cell contacts. Thus, suggesting that steric properties of KPI-APP might be the cause for weaker cis-interaction in the ER, compared to APP695. Finally, we provide evidence that APP/APLP1 heterointeractions are likewise initiated in the ER, suggesting a similar mechanism for heterodimerization. Therefore, dynamic alterations of APP between monomeric, homodimeric, and possibly heterodimeric status could at least partially explain some of the variety in the physiological functions of APP.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified a novel β amyloid precursor proteinAPP) mutation (V715M-βAPP770) that cosegregates with early-onset Alzheimer’s disease (AD) in a pedigree. Unlike other familial AD-linked βAPP mutations reported to date, overexpression of V715M-βAPP in human HEK293 cells and murine neurons reduces total Aβ production and increases the recovery of the physiologically secreted product, APPα. V715M-βAPP significantly reduces Aβ40 secretion without affecting Aβ42 production in HEK293 cells. However, a marked increase in N-terminally truncated Aβ ending at position 42 (x-42Aβ) is observed, whereas its counterpart x-40Aβ is not affected. These results suggest that, in some cases, familial AD may be associated with a reduction in the overall production of Aβ but may be caused by increased production of truncated forms of Aβ ending at the 42 position.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphoinositides are important components of eukaryotic membranes that are required for multiple forms of membrane dynamics. Phosphoinositides are involved in defining membrane identity, mediate cell signalling and control membrane trafficking events. Due to their pivotal role in membrane dynamics, phosphoinositide de-regulation contributes to various human diseases. In this review, we will focus on the newly emerging regulation of the PIKfyve complex, a phosphoinositide kinase that converts the endosomal phosphatidylinositol-3-phosphate [PI(3)P] to phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2)], a low abundance phosphoinositide of outstanding importance for neuronal integrity and function. Loss of PIKfyve function is well known to result in neurodegeneration in both mousemodels and human patients. Our recent work has surprisingly identified the amyloid precursor protein (APP), the central molecule in Alzheimer s disease aetiology, as a novel interaction partner of a subunit of the PIKfyve complex, Vac14. Furthermore, it has been shown that APP modulates PIKfyve function and PI(3,5)P2 dynamics, suggesting that the APP gene family functions as regulator of PI(3,5)P2 metabolism. The recent advances discussed in this review suggest a novel, unexpected, â-amyloid-independent mechanism for neurodegeneration in Alzheimer s disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have shown that platelet APP ratio (representing the percentage of 120-130 kDa to 110 kDa isoforms of the amyloid precursor protein) is reduced in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). In the present study, we sought to determine if baseline APP ratio predicts the conversion from MCI to AD dementia after 4 years of longitudinal assessment. Fifty-five older adults with varying degrees of cognitive impairment (34 with MCI and 21 with AD) were assessed at baseline and after 4 years. MCI patients were re-classified according to the conversion status upon follow-up: 25 individuals retained the diagnostic status of MCI and were considered as stable cases (MCI-MCI); conversely, in nine cases the diagnosis of dementia due to AD was ascertained. The APP ratio (APPr) was determined by the Western blot method in samples of platelets collected at baseline. We found a significant reduction of APPr in MCI patients who converted to dementia upon follow-up. These individuals had baseline APPr values similar to those of demented AD patients. The overall accuracy of APPr to identify subjects with MCI who will progress to AD was 0.74 +/- A 0.10, p = 0.05. The cut-off of 1.12 yielded a sensitivity of 75 % and a specificity of 75 %. Platelet APPr may be a surrogate marker of the disease process in AD, with potential implications for the assessment of abnormalities in the APP metabolism in patients with and at risk for dementia. However, diagnostic accuracy was relatively low. Therefore, studies in larger samples are needed to determine whether APPr may warrant its use as a biomarker to support the early diagnosis of AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apolipoprotein E4 (apoE4) genotype is associated with an increased risk for Alzheimer's disease (AD). This is thought to be in part attributable to an impact of apoE genotype on the processing of the transmembrane amyloid precursor protein (APP) thereby contributing to amyloid beta peptide formation in apoE4 carriers, which is a primary patho-physiological feature of AD. As apoE and alphato-copherol (alpha-toc) have been shown to modulate membrane bilayer properties and hippocampal gene expression, we studied the effect of apoE genotype on APP metabolism and cell cycle regulation in response to dietary a-toc. ApoE3 and apoE4 transgenic mice were fed a diet low (VE) or high (+VE) in vitamin E (3 and 235 mg alpha-toe/kg diet, respectively) for 12 weeks. Cholesterol levels and membrane fluidity were not different in synaptosomal plasma membranes isolated from brains of apoE3 and apoE4 mice (-VE and +VE). Non-amyloidogenic alpha-secretase mRNA concentration and activity were significantly higher in brains of apoE3 relative to apoE4 mice irrespective of the dietary a-toe supply, while amyloidogenic beta-secretase and gamma-secretase remained unchanged. Relative mRNA concentration of cell cycle related proteins were modulated differentially by dietary a-toc supplementation in apoE3 and apoE4 mice, suggesting genotype-dependent signalling effects on cell cycle regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Alzheimer’s disease Aβ peptide can increase the levels of cell-associated amyloid precursor protein (APP) in vitro. To determine the specificity of this response for Aβ and whether it is related to cytotoxicity, we tested a diverse range of fibrillar peptides including amyloid-β (Aβ), the fibrillar prion peptides PrP106–126 and PrP178–193 and human islet-cell amylin. All these peptides increased the levels of APP and amyloid precursor-like protein 2 (APLP2) in primary cultures of astrocytes and neurons. Specificity was shown by a lack of change to amyloid precursor-like protein 1, τ-1 and cellular prion protein (PrPc) levels. APP and APLP2 levels were elevated only in cultures exposed to fibrillar peptides as assessed by electron microscopy and not in cultures treated with non-fibrillogenic peptide variants or aggregated lipoprotein. We found that PrP106–126 and the non-toxic but fibril-forming PrP178–193 increased APP levels in cultures derived from both wild-type and PrPc-deficient mice indicating that fibrillar peptides up-regulate APP through a non-cytotoxic mechanism and irrespective of parental protein expression. Fibrillar PrP106–126 and Aβ peptides bound recombinant APP and APLP2 suggesting the accumulation of these proteins was mediated by direct binding to the fibrillated peptide. This was supported by decreased APP accumulation following extensive washing of the cultures to remove fibrillar aggregates. Pre-incubation of fibrillar peptide with recombinant APP18–146, the putative fibril binding site, also abrogated the accumulation of APP. These findings show that diverse fibrillogenic peptides can induce accumulation of APP and APLP2 and this mechanism could contribute to pathogenesis in neurodegenerative disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Das Amyloid-Vorläufer-Protein (APP) spielt eine zentrale Rolle in der Entstehung und Entwicklung von Morbus Alzheimer. Hierbei ist die proteolytische Prozessierung von APP von entscheidender Bedeutung. Das Verhältnis von neurotoxischen und neuroprotektiven Spaltprodukten, die über den amyloidogenen und nicht-amyloidogenen Weg der APP-Prozessierung gebildeten werden, ist für das Überleben von Neuronen und deren Resistenz gegen zytotoxische Stress-Stimuli von hoher Relevanz. Störungen der Calcium-Homöostase sind ein bekanntes Phänomen bei Morbus Alzheimer. Im ersten Teil der vorliegenden Arbeit wurde die Rolle von überexprimiertem APP in der Regulation des neuronalen Zelltods nach Calcium Freisetzung untersucht. Die Calcium Freisetzung aus dem endoplasmatischen Retikulum wurde durch die Inhibition der sarko- und endoplasmatischen Calcium-ATPasen (SERCA) ausgelöst. Dies führt zur Induktion der sogenannten „unfolded protein response“ (UPR) und zu einer Aktivierung von Effektor-Caspasen. Für APP-überexprimierende PC12 Zellen konnte bereits zuvor eine im Vergleich zur Kontrolle nach der durch Calcium Freisetzung-induzierten Apoptose eine erhöhte intrazelluläre Calcium Konzentration nachgewiesen werden. Über die Messung der Aktivierung von Effektor-Caspasen konnte zudem ein gesteigerter Zelltod in den APP-überexprimierenden Zellen gemessen werden. Zudem konnte gezeigt werden, dass der pro-apoptotische Transkriptionsfaktor CHOP, nicht aber die klassischen UPR-Zielgene spezifisch hochreguliert wurden. Die APP-modulierte gesteigerte Induktion von Apoptose nach Calcium Freisezung konnte durch Komplexierung der intrazellulären Calcium Ionen und durch Knockdown von CHOP im Vergleich zur Kontrolle gänzlich unterdrückt werden. Ferner bewirkte die Inhibition der Speicher-aktivierten Calcium-Kanälen (SOCC) eine signifikante Unterdrückung der beobachteten erhöhten intrazellulären Calcium Konzentration und der gesteigerten Apoptose in den APP-überexprimierenden PC12 Zellen. In diesem Teil der Arbeit konnte eindeutig gezeigt werden, dass APP in der Lage ist den durch Calcium-Freisetzung-induzierten Zelltod zu potenzieren. Diese Modulation durch APP verläuft in einer UPR-unabhängigen Reaktion über die Aktivierung von SOCC’s, einer erhöhten Aufnahme von extrazellulärem Calcium und durch erhöhte Induktion des pro-apoptotischen Transkriptionsfaktors CHOP. Im zweiten Teil dieser Arbeit wurde die sAPPα-vermittelte Neuroprotektion untersucht. Dabei handelt es sich um die N-terminale Ektodomäne von APP, die über die Aktivität der α-Sekretase prozessiert wird und anschließend extrazellulär abgegeben wird. Ziel dieser Versuchsreihe war die neuroprotektive physiologische Funktion von APP im Hinblick auf den Schutz von neuronalen Zellen vor diversen für Morbus Alzheimer relevanten Stress-Stimuli bzw. Apoptose-Stimuli zu untersuchen. Durch die Analyse der Effektor-Caspasen konnte gezeigt werden, dass sAPPα in der Lage ist PC12 Zellen potent vor oxidativem Stress, DNA-Schäden, Hypoxie, proteasomalem Stress und Calcium-Freisetzung zu schützen. Außerdem konnte gezeigt werden, dass sAPPα in der Lage ist den pro-apoptotischen Stress-induzierten JNK/Akt-Signalweg zu inhibieren. Eine Beteiligung des anti-apoptotischen PI3K/Akt-Signalwegs bei der sAPPα-vermittelten Protektion konnte über die Inhibition der PI3-Kinase ebenfalls demonstriert werden, die eine Aufhebung der sAPPα-vermittelten Neuroprotektion bewirkte. Diese Daten zeigen neue molekulare Mechanismen auf, die dem sAPPα-vermittelten Schutz vor pathophysiologisch relevanten Stress-Stimuli in neuronalen Zellen zugrunde liegen. Im letzten Teil der Arbeit wurden verschieden Gruppen von pharmakologischen Substanzen im Hinblick auf ihre neuroprotektive Wirkung untersucht und mit ihren Effekten auf den APP-Metabolismus korreliert. Die Untersuchungen ergaben, dass Galantamin, ein schwacher Acetycholinesterase Inhibitor und allosterisch potenzierender Ligand von nikotinischen Acetylcholin-Rezeptoren in der Lage war, naive, und mit noch höherer Effizienz APP-überexprimierende Zelllinien vor dem Stress-induzierten Zelltod zu schützen. Zudem bewirkte Galantamin in APP-überexprimierenden HEK293 Zellen eine rasche Erhöhung der sAPPα Sekretion, so dass hier von einer Rezeptor-vermittelten Modulation des APP Metabolismus ausgegangen werden kann. Omega-3 Fettsäuren wirken sich positiv auf die Membranfluidität von Zellen aus und es konnte bereits gezeigt werden, dass die Bildung des toxischen Aβ Peptids hierdurch vermindert wird. In Analogie zu Galantamin schützte die Omega-3 Fettsäure Docosahexaensäure (DHA) neuronale Zellen vor dem Stress-induzierten Zelltod, wobei der Schutz in APP-überexprimierenden Zellen besonders effizient war. Diese Daten legen nahe, dass die Aktivierung des antiamyloidogenen Wegs der APP-Prozessierung ein viel versprechender Ansatz für die Entwicklung neuer Therapien gegen Morbus Alzheimer sein könnte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Zinkendopeptidasen Meprin α und β sind Schlüsselkomponenten in patho(physiologischen) Prozessen wie Entzündung, Kollagenassemblierung und Angiogenese. Nach ihrer Entdeckung in murinen Bürstensaummembranen und humanen Darmepithelien, wurden weitere Expressionsorte identifiziert, z.B. Leukozyten, Krebszellen und die humane Haut. Tiermodelle, Zellkulturen und biochemische Analysen weisen auf Funktionen der Meprine in der Epithelialdifferenzierung, Zellmigration, Matrixmodellierung, Angiogenese, Bindegewebsausbildung und immunologische Prozesse hin. Dennoch sind ihre physiologischen Substrate weitgehend noch unbekannt. Massenspektrometrisch basierte Proteomics-Analysen enthüllten eine einzigartige Spaltspezifität für saure Aminosäurereste in der P1´ Position und identifizierten neue biologische Substratkandidaten. Unter den 269 extrazellulären Proteinen, die in einem Substratscreen identifiziert wurden, stellten sich das amyloid precursor protein (APP) and ADAM10 (a disintegrin and metalloprotease 10) als sehr vielversprechende Kandidaten heraus. Mehrere Schnittstellen innerhalb des APP Proteins, hervorgerufen durch verschiedenen Proteasen, haben unterschiedlichen Auswirkungen zur Folge. Die β-Sekretase BACE (β-site APP cleaving enzyme) prozessiert APP an einer Schnittstelle, welche als initialer Schritt in der Entwicklung der Alzheimer Erkrankung gilt. Toxische Aβ (Amyloid β)-Peptide werden in den extrazellulären Raum freigesetzt und aggregieren dort zu senilen Plaques. Membran verankertes Meprin β hat eine β-Sekretase Aktivität, die in einem Zellkultur-basierten System bestätigt werden konnte. Die proteolytische Effizienz von Meprin β wurde in FRET (Fluorescence Resonance Energy Transfer)-Analysen bestimmt und war um den Faktor 104 höher als die von BACE1. Weiterhin konnte gezeigt werden, dass Meprin β die ersten zwei Aminosäuren prozessiert und somit aminoterminal einen Glutamatrest freisetzt, welcher nachfolgend durch die Glutaminylzyklase in ein Pyroglutamat zykliert werden kann. Trunkierte Aβ-Peptide werden nur in Alzheimer Patienten generiert. Aufgrund einer erhöhten Hydrophobie weisen diese Peptide eine höhere Tendenz zur Aggregation auf und somit eine erhöhte Toxizität. Bis heute wurde keine Protease identifiziert, welche diese Schnittstelle prozessiert. Die Bildung der Meprin vermittelten N-terminalen APP Fragmenten wurde in vitro und in vivo detektiert. Diese N-APP Peptide hatten keine cytotoxischen Auswirkungen auf murine und humane Gehirnzellen, obwohl zuvor N-APP als Ligand für den death receptor (DR) 6 identifiziert wurde, der für axonale Degenerationsprozesse verantwortlich ist. rnIm nicht-amyloidogenen Weg prozessiert ADAM10 APP und entlässt die Ektodomäne von der Zellmembran. Wir konnten das ADAM10 Propeptid als Substrat von Meprin β identifizieren und in FRET Analysen, in vitro und in vivo zeigen, dass die Meprin vermittelte Prozessierung zu einer erhöhten ADAM10 Aktivität führt. Darüber hinaus wurde ADAM10 als Sheddase für Meprin β identifiziert. Shedding konnte durch Phorbol 12-myristate 13-acetate (PMA) oder durch das Ionophor A23187 hervorgerufen werden, sowie durch ADAM10 Inhibitoren blockiert werden. rnDiese Arbeit konnte somit ein komplexes proteolytisches Netwerk innerhalb der Neurophysiologie aufdecken, welches für die Entwicklung der Alzheimer Demenz wichtig sein kann.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid precursor protein (APP) and amyloid-beta (Abeta) appear to participate in the pathophysiology of retinal ganglion cell (RGC) death in glaucoma. We, therefore, determined the distribution of APP and Abeta in the retinas of C57BL/6 mice after induction of chronic ocular hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Evidence suggests that altered metabolism of amyloid precursor protein (APP) may play a role in the pathophysiology of retinal ganglion cell (RGC) death in the etiology of glaucoma. The authors sought to determine the distribution of APP and amyloid-beta (Abeta) in DBA/2J glaucomatous mouse retinas. METHODS: The retinas of 3- and 15-month-old DBA/2J mice and C57/BL-6 mice (control group) were fixed with 4% paraformaldehyde and processed for immunohistochemistry. Antibodies used included a polyclonal antibody to the C terminus of Abeta 40 and a polyclonal antibody to the APP ectodomain. Immunohistochemically stained tissue was graded using light microscopy. Distribution and semiquantitative expression of APP and Abeta in young and old glaucomatous and normal retinas were determined and compared. RESULTS: Strong APP and Abeta immunoreactivity was found in the RGC layer, optic nerve, and pia/dura of old DBA/2J retinas, with considerably higher intensity found in the old compared with the young DBA/2J mice. In contrast to glaucomatous mice, the control group did not show any notable age-related difference. CONCLUSIONS: Disruption of the homeostatic properties of secreted APP with consecutive Abeta cytotoxicity might be a contributing factor of ganglion cell loss in glaucomatous mouse retinas.